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Abstract

Quantum Gaussian systems provide the mathematical model for the electromag-
netic radiation in the quantum regime. Quantum Gaussian channels are the physical
operation on quantum Gaussian systems that model the propagation of electromag-
netic signals through optical fibers, which are the main mean to distribute quantum
states in quantum key distribution and in the forthcoming quantum internet. Quan-
tum Gaussian states are the most relevant states of quantum Gaussian system, since
they can be easily prepared experimentally and are the best codewords to communicate
through quantum Gaussian channels.

This lecture will provide an introduction to quantum information with quantum
Gaussian systems. The topics will include the canonical commutation relations and
quantum Gaussian states, channels and measurements. Particular emphasis will be put
on coherent, squeezed and thermal states, quantum Gaussian attenuator and amplifier
channels and homodyne and heterodyne measurements.

• Electromagnetic field main information carrier

• Mathematical model: ensemble of harmonic oscillators (quantum Gaussian system)

• Restricting to finite number of modes, H = L2(Rm) wavefunctions of m harmonic
oscillators

• Quadratures Q1 . . . Qm, P1 . . . Pm put together in

R1 = Q1, R2 = P1, . . . , R2m−1 = Qm, R2m = Pm

• Canonical commutation relations and symplectic form

[Qj, Pk] = i δjk I (~ = 1)

[Rj, Rk] = i ∆jk I ∆ =
m⊕
i=1

(
0 1
−1 0

)

• Homodyne measurement: measure
∑2m

i=1 ciRi
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• First moments and covariance matrix

ri = Tr [Ri ρ] σij =
1

2
Tr [{Ri − ri I, Rj − rj I} ρ]

• Uncertainty principle

R(z) =
2m∑
i=1

zi (Ri − ri I) z ∈ C2m

Tr
[
R(z)†R(z) ρ

]
≥ 0 =⇒ σ ≥ ± i

2
∆ detσ ≥ 1 for m = 1

• Ladder operators

aj =
Qj + iPj√

2

[
aj, a

†
k

]
= δjk I αj =

qj + i pj√
2

• Photon-number Hamiltonian (ω = 1)

H =
m∑
i=1

a†iai =
m∑
i=1

Q2
i + P 2

i − I
2

Tr [H ρ] =
‖r‖2 + trσ −m

2

• Vacuum and Fock states (m = 1)

a|0〉 = H|0〉 = 0 |n〉 =
a†
n

√
n!
|0〉 H|n〉 = n|n〉 n ∈ N

• Unitary operators with simple action on quadratures?

• Displacement operators

D(α) = exp

(
m∑
i=1

(
αi a

†
i − α∗i ai

))
D(α)† aiD(α) = ai + α I α ∈ Cm

• Symplectic group

Sp(2m,R) =
{
S ∈ R2m×2m : S∆ST = ∆

}
Sp(2,R) =

{
S ∈ R2×2 : detS = 1

}
• Symplectic unitaries: symplectic transformations of quadratures

U(S)†Ri U(S) =
2m∑
j=1

Sij Rj U(S)U(S ′) = U(S S ′) σ 7→ S σ ST
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• Passive symplectic unitaries (Exercise)

U(S)†H U(S) = H STS = I2m =⇒ S ∈ Sp(2m,R) ∩O(2m,R) ' U(m)

U(S)† ai U(S) =
m∑
j=1

U(S)ij aj U(S) ∈ U(m) U(S)|0〉 = |0〉

– Phase shifter (m = 1)

S(t) =

(
cos t sin t
− sin t cos t

)
t ∈ R U(t) = e−iH t

– Beam-splitter (m = 2)

S(η) =

( √
η I2 −

√
1− η I2√

1− η I2
√
η I2

)
0 ≤ η ≤ 1

U(η) = exp
(
arccos

√
η
(
a† b− b† a

))
• Active symplectic unitaries

– One-mode squeezing (m = 1)

S(k) =

(
k 0
0 1

k

)
U(k) = exp

(
ln k

a†
2 − a2

2

)
k > 0

– Two-mode squeezing (m = 2)

S(κ) =

( √
κ I2

√
κ− 1σZ√

κ− 1σZ
√
κ I2

)
κ ≥ 1 σZ =

(
1 0
0 −1

)
U(κ) = exp

(
arccosh

√
κ
(
a† b† − a b

))
• Phase shifters, beam-splitters and one-mode squeezers generate all symplectic unitaries:

any S ∈ Sp(2m,R) can be decomposed as

S = O1

(
m⊕
i=1

S(ki)

)
O2 O1, O2 ∈ Sp(2m,R) ∩O(2m,R)

• Quantum Gaussian states: thermal states of quadratic Hamiltonians, completely de-
termined by first and second moments

ω ∝ exp

(
−1

2

2m∑
i=1

(Ri − ri)hij (Rj − rj)

)
r ∈ R2m, h ∈ R2m×2m, h > 0
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– Outcome of heterodyne measurement has Gaussian distribution given by r, σ

– Thermal quantum Gaussian states (m = 1)

ω(E) =
1

E + 1

∞∑
n=0

(
E

E + 1

)n
|n〉〈n| E ≥ 0

r = 0 σ =
(
E + 1

2

)
I2 h = ln

E + 1

E
I2

ω(0) = |0〉〈0|
S(ω(E)) = (E + 1) ln (E + 1)− E lnE := g(E)

– Coherent states (m = 1)

|α〉 = D(α)|0〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 α ∈ C σ = 1

2
I2 a|α〉 = α|α〉

U(η)|α, β〉 =
∣∣∣√η α−√1− η β,

√
1− η α +

√
η β
〉

– One-mode squeezed vacuum states (m = 1)

|φk〉 = U(S(k))|0〉 =

√
2k

k2 + 1

∞∑
n=0

(
k2 − 1

2 (k2 + 1)

)n √
(2n)!

n!
|2n〉

σ =

(
k2

2
0

0 1
2k2

)
– Two-mode squeezed vacuum states (m = 2)

|φκ〉 = U(S(κ))|0〉 =
1√
κ

∞∑
n=0

(
κ− 1

κ

)n
2

|n〉 ⊗ |n〉

σ =

( (
κ− 1

2

)
I2

√
κ (κ− 1)σZ√

κ (κ− 1)σZ
(
κ− 1

2

)
I2

)
– Normal form of quantum Gaussian states

σ = S

(
m⊕
i=1

νi I2

)
ST ω = D(α)U(S)

(
m⊗
i=1

ω(νi − 1
2
)

)
U(S)†D(α)†

– νi ≥ 1
2
: symplectic eigenvalues of σ

• Quantum Gaussian states maximize von Neumann entropy for given first and second
moments: ∀ quantum state ρ, let ρG be the Gaussian states with same first and second
moments. Then,

S(ρ‖ρG) = S(ρG)− S(ρ) ≥ 0
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• Heterodyne measurement: send ρ through η = 1/2 beam-splitter, then measure Q on
first port and P on second (Exercise)

α = q + i p dp(α) = 〈α|ρ|α〉 dα

πm

• Quantum Gaussian channels: preserve set of quantum Gaussian states

Φ(ρ) = TrB

[
U(S) (ρ⊗ ω)U(S)†

]
r 7→ KT r σ 7→ KT σK + α α ≥ ± i

2

(
KT ∆K −∆

)
– Gauge-covariant if commuting with time evolution

Φ
(
e−iH t ρ eiH t

)
= e−iH t Φ(ρ) e−iH t KT S(t) = S(t)KT S(t)αS(t)T = α

– Quantum Gaussian attenuator Eη,E: S =
⊕m

i=1 S(η) (beam-splitter), ω = ω(E)⊗m;
noiseless for E = 0. Models signal propagation through optical fibers and free
space.

r 7→ √η r σ 7→ η σ + (1− η)
(
E + 1

2

)
I2m

Eη,0(|α〉〈α|) = |√η α〉 〈√η α|

– Quantum Gaussian amplifier Aκ,E: S =
⊕m

i=1 S(κ) (two-mode squeezing), ω =
ω(E)⊗m; noiseless for E = 0. Models signal amplification.

r 7→
√
κ r σ 7→ κσ + (κ− 1)

(
E + 1

2

)
I2m

– m = 1: noiseless quantum Gaussian attenuators and amplifiers generate gauge-
covariant quantum Gaussian channels
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