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Abstract. These notes are intended for those students that would like
to see the quickest route for the proof that the Connes Embedding Prob-
lem has a negative answer.

1. About the Connes Embedding Problem, Von Neumann
Algebras, and All That

The Connes Embedding Problem(CEP) was an open question about the
structure of a certain kind of von Neumann algebra. Due to the work of
Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry Yuen
in the paper MIP*= RE[5], we now know that this problem has a negative
answer. The purpose of this first lecture is to introduce us to what this
problem was all about. Attempts to resolve this problem lead to the devel-
opment of many equivalent restatements of the problem, which now also all
have negative answers. In fact, the paper MIP*=RE does not negate the
original problem, but one of the equivalent reformulations. Sorting through
all these equivalent reformulations is a long road, and to negate the original
statement of the problem we do not need the equivalences but just impli-
cations in one direction. Often the only direction that we need is actually
the “easier” of the two implications. So our other goal for today is to sketch
in the shortest route from the CEP to the version that we will negate, all
while keeping the discussion at a level accessible to non-experts in operator
algebras. As a bonus, we will obtain an even stronger refutation of the CEP
than was first realized. What we now call Von Neumann Algebras were in-
troduced by von Neumann which he called Algebras of Operators, but their
name has since been changed in his honor. His motivation for studying
these was quantum mechanics, so we start with that viewpoint. Quantum
mechanical systems come with a Hilbert space called the state space and
the unit vectors in that Hilbert space represent the pure states of a system.
Suppose that the system is in state ψ ∈ H and we want to perform a mea-
surement that has K possible outcomes. Then the standard model says that
there will exist K measurement operators, M1, ...MK ∈ B(H) such that:

• the probability of getting outcome k is pk = ‖Mkψ‖2,
• if outcome k is observed then the state of the system changes to

Mkψ
‖Mkψ‖

1
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The fact that 1 =
∑K

k=1 pk implies that

1 =

K∑
k=1

〈Mkψ|Mkψ〉 =

K∑
k=1

〈ψ|M∗kMkψ〉

which implies that
K∑
k=1

M∗kMk = I.

Von Neumann argued that in certain settings the underlying state space
could have a family of unitaries that acted upon it {Ua : a ∈ A}. Think
perhaps of the case where these unitaries represent moving the state to a
different location in space. Suppose you know that if you first measured the
state and then moved it to a new location, then this should be the same
as if you first moved it to the new location and then measured the state.
Intuitively, the outcome of the quantum experiment is not changed by where
in your lab you perform it. If this is the case then any measurement operator
M for this system must satisfy, MUa = UaM, ∀a. Thus, the measurement
operators for this system should not be all operators on the state space, but
a subset of B(H).

This lead him to study sets of operators that commute with a set of uni-
tary operators. He denoted such sets byM since this is what he thought sets
of measurement operators should look like. For this reason von Neumann
algebras are still generally denoted by the letter M.

Definition 1.1. Given a set S ⊆ B(H) we call the set

S ′ = {T ∈ B(H) : TS = ST,∀S ∈ S},

the commutant of S.

Problem 1.2. Show that

S ′ = S ′′′,
and

S ′′ = S ′′′′.

We briefly recall weak, strong and weak* convergence. A net of operators
{Tλ}λ∈D converges to T in

• the weak-topology if 〈k|Tλh〉 → 〈k|Th〉 for all h, k ∈ H,
• the strong-topology if ‖Tλh− Th‖ → 0 for all h ∈ H,
• the weak*-topology if Tr(TλK)→ Tr(TK) for all K ∈ C1(H). Here
C1(H) denotes the trace class operators.

We use S−w, S−s and S−wk∗, to denote the sets of operators that are limits
of nets of operators from S in the weak, strong, and weak* sense.

Recall that a set A is called an algebra if it is a vector space and X,Y ∈
A =⇒ XY ∈ A.



3

Problem 1.3. Let S ⊆ B(H) be a set. Then S ′ is a subalgebra of B(H).
For those with a functional analysis background, show that S ′ is closed in
the weak, strong and weak* topologies.

Problem 1.4. Show that if S ⊆ B(H) is a set of unitaries and T ∈ S ′ then
T ∗ ∈ S ′. Such a set is said to be *-closed.

These two problems show that commutants of sets of unitaries are subal-
gebras that are *-closed and closed in many topologies.

Theorem 1.5 (von Neumanns bicommutant Theorem). Let A ⊆ B(H) be
an algebra of operators such that I ∈ A and X ∈ A =⇒ X∗ ∈ A. Then
A′′ = A−w = A−s = A−wk∗.

Thus, not only are operators that can be realized as limits in these three
senses all equal, but something defined purely algebraically, A′′ is equal to
something defined as a topological closure.

Corollary 1.6. Let M⊆ B(H) be an algebra of operators such that I ∈M
and X ∈M =⇒ X∗ ∈M. The following are equivalent:

• M =M′′,
• M =M−s,
• M =M−w,
• M =M−wk∗.

Definition 1.7. Any M⊆ B(H) satisfying I ∈M, X ∈M =⇒ X∗ ∈M
and M =M′′ is called a von Neumann algebra.

Murray and von Neumann set about to classify all such algebras. This
program goes on to this day and has an influence on quantum mechanics,
which we will try to explain. First, we discuss the classification program.

Definition 1.8. A von Neumann algebra M ⊆ B(H) is called a factor if
M∩M′ = C · I.

Just like all integers can be decomposed into products of primes, Von
Neumann proved that every von Neumann algebra could be built from fac-
tors by something called direct integration theory. Hence, to understand
all von Neumann algebras we only need to understand all factors.

The next step that Murray and von Neumann made was to break factors
down into three types.

Definition 1.9. Let M be a von Neumann algebra and let E,F ∈ M be
projections. We write E ≤ F if R(E) ⊆ R(F ) and E < F when E ≤ F and
E 6= F . We say that F 6= 0 is minimal if E < F =⇒ E = 0. We say
that E and F are Murray-von Neumann equivalent and write E ∼ F
if there exists a partial isometry W ∈ M such that E = W ∗W,F = WW ∗.
We say that F is finite if there is no E such that E ∼ F and E < F .

Some examples are useful.
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Example 1.10. Let M = B(Cm). Then F is minimal if and only if F is
a rank one projection, E ∼ F if and only if E and F are projections onto
subspaces of the same dimension. Hence, every projection is finite.

Example 1.11. Let M = B(H), where H is infinite dimensional. Again a
projection is minimal if and only if it is rank one. Since a partial isometry
with E = W ∗W,F = WW ∗ is an isometry from R(E) to R(F ) and isome-
tries preserve inner products, they take an onb for one space to an onb to
the other space. Hence, E ∼ F ⇐⇒ dimHS(R(E)) = dimHS(R(F )). On
the other hand as soon as a set is infinite we can throw away one element
and the subset has the same cardinality. Hence, as soon as R(F ) is infinite
dimensional, we can take an onb, throw away one element and that will be
an onb for a subspace R(E) ⊆ R(F ) of the same dimension. We can now
take a partial isometry that sends the onb for R(F ) to the onb for R(E).
This shows that E ∼ F with E < F . Hence, F is NOT finite in the M-vN
sense.

Hence, the only finite projections are the projections onto finite dimen-
sional subspaces.

Definition 1.12. A von Neumann factor is called Type I if it has a minimal
projection. It is Type II if it has no minimal projections, but has a finite
projection. It is called Type II1 is it is Type II and the identity is a finite
projection. If it is Type II but not Type Type II1, then it is called Type
II∞. It is called Type III if it is not Type I or Type II.

Theorem 1.13 (Murray-von Neumann). A von Neumann algebra is Type
I if and only if it is *-isomorphic to B(H) for some H.

Definition 1.14. Let M be a von Neumann algebra. A map τ : M → C
is called a state is τ(I) = 1 and p ≥ 0 =⇒ τ(p) ≥ 0. A map is called a
tracial state if it is a state and satisfies τ(XY ) = τ(Y X). It is faithful if
τ(X∗X) = 0 =⇒ X = 0.

For B(Cn), there is only one faithful tracial state, namely τn(X) =
1
nTr(X). Note that in this setting the possible traces of projections are

the numbers { kn : 0 ≤ k ≤ n}, which represent the ”fractional” dimension of
the corresponding subspace.

Theorem 1.15 (Murray-von Neumann). LetM be a Type II1 factor. Then:

• there exists a faithful tracial state, τ :M→ C that is also continuous
in the weak*-topology,
• for every 0 ≤ t ≤ 1 there exists a projection P ∈M with τ(P ) = t,
• if P,Q ∈M are projections, then P ∼ Q ⇐⇒ τ(P ) = τ(Q).

This lead von Neumann to refer to continuous geometries since, unlike
finite dimensions, in a Type II1 setting there are subspaces of every (frac-
tional) dimension t for every 0 ≤ t ≤ 1. Thus, even projections of irrational
dimension exist.
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Many questions in this classification program are now known to hinge on
the classification of Type II1-factors. One of the great breakthroughs in
this theory was made by Alain Connes, who studied II1-factors that , in
a certain sense, are limits of matrix algebras. Such II1-factors are called
hyperfinite.

Connes proved that all hyperfinite II1-factors are isomorphic in an ap-
propriate sense. This one common hyperfinnite II1-factor is denoted by
R.

We describe one way to obtain this algebra. Suppose that our Hilbert
space is H = `2(N) with orthonormal basis {en = |n〉 : n ∈ N}. By di-
viding the integers into the even and odd integers we obtain two subspaces
Heven,Hodd such that H = Heven ⊕ Hodd. Moreover, the map en → en+1

defines an isomorphism W : Hodd → Heven.

If we map a 2×2 matrix

(
a b
c d

)
to the operator aPodd+bW+cW ∗+dPeven

then we see that this is a *-isomorphism of M2 into B(H). Thus, modulo
this identification, we have M2 ⊆ B(H).

Now repeat this process by dividing the evens and odds in half. That is,
consider the four sets that are the integers modulo 4. In this way we get a
copy of the 4× 4 matrices included into B(H) with

M2 ⊆M4 ⊆ B(H).

Note that the way that the inclusion of M2 into M4 happens is that

(
a b
c d

)
→


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 .

Note that when we take the unique tracial states on M2 and M4 then this
map preserves that tracial state since

τ2(

(
a b
c d

)
=
a+ d

2
= τ4(


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

).

Continuing this process, we obtain copies of M2n ⊆ B(H) for all n in such
a way that M2n ⊆ M2n+1 via a similar doubling map that preserves these
normalized traces.

The union of all the operators obtained this way defines a subset of B(H),
often denoted by M2∞ . It is not hard to see that this set is an algebra and
that if X is in this set, then X∗ is in this set. Hence, M ′′2∞ is a von Neumann
algebra, that is in a certain sense a limit of matrix algebras.

Since the inclusions preserve traces at each stage, there is a well-defined
map τ2∞ : M2∞ →]C given by

τ2∞(X) = τ2n(X) for X ∈M2n .,



6 V. I. PAULSEN

This map extends to define a canonical tracial state τ : M ′′2∞ → C.
In fact, M ′′2∞ is a hyperfinite II1-factor. So this is one very concrete way

to obtain the algebra R along with its trace τ .
Now if instead of dividing the integers into “halves”, we had used the

integers modolo 3, 32, ..., we would obtain a union of subalgebras denoted
M3∞ ⊆ B(H) and a new hyperfinite von Neumann algebra M ′′3∞ along with
a canonical trace and these two algebras would be isomorphic in a trace
preserving fashion by Connes’ theorem. So R could be obtained this way as
well.

In fact, these two von Neumann algebras were shown to isomorphic by
von Neumann. Moreover, it is known that if we do not take the double
commutant, then M2∞ and M3∞ are not isomorphic. In fact, even if we just
take their norm closures in B(H), then these are two C*-algebras that are
not isomorphic.

After successfully describing all hyperfinite II1-factors, Connes specu-
lated on how one might obtain all Type II1-factors. Given any von Neu-
mann algebra with trace (M, τ) there is a process by which one can build a
larger algebra and trace, called taking the ultrapower of the algebra, denoted
(Mω, τω). This construction is a bit too complicated to get into here, but
we will quickly pass to some equivalences.

Connes’ Embedding Problem(CEP) asks if given an arbitrary Type II1-
factor and trace (M, τ), does it embed in a trace preserving manner into
(Rω, τω)?

Here embeds means that we seek a map π : M → Rω that is a unital,
*-homomorphism, that is continuous with respect to the weak*-topologies,
and is trace preserving, i.e.,

τω(π(X)) = τ(X), ∀X ∈M.

Later Haagerup showed that if CEP was true then for every separable
C*-algebra with a trace (A, τ) there would exist a *-homomorphism into
(Rω, τω) that is trace preserving manner. This fact allows us to not have to
think about weak*-topologies. This is one of the many equivalent restate-
ments of the CEP. We take this as our formal statement of the CEP.

Connes Embedding Problem: Given a separable C*-algebra and a
tracial state (A, τ) does there exist a *-homomorphism π : A → Rω such
that τ = τω ◦ π ?

The matricial microstates problem is another restatement that avoids all
discussion of ultrapowers. Informally, it asks if traces of products of self-
adjoint elements up to a certain length can be approximated by traces of self-
adjoint matrices of a large enoguh size. From now on we use τn : Mn → C
to denote the unique normalized trace, τn(X) = 1/n

∑n
i=1 xi,i.

The formal statement is below.

1.1. Matricial Microstates. . Given a C*-algebra and tracial state (A, τ),
n self-adjoint elements h1, ..., hn ∈ A of norm 1, an integer k and ε > 0, a
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(k, ε)-matricial microstate is a matrix algebra Md and self-adjoint matrices
H1, ...,Hn ∈Md of norm 1, such that

|τ(hi1 · · ·hij )− τd(Hi1 · · ·Hij )| < ε,

holds for every possible product of j ≤ k elements.
When this is true for (A, τ) for all n, k, ε then we say that (A, τ) has

matricial microstates.. Here is the key fact.

Theorem 1.16 (Voiculsecu [13]). Let (A, τ) be a C*-algebra and tracial
state. Then there exists a trace preserving *-homomorphism of (A, τ) into
(Rω, τω) if and only if (A, τ) has (k, ε)-matricial microstates for all k, ε and
for all sets of n self-adjoint elements of norm 1.

Thus, loosely speaking, the CEP is equivalent to a problem about approxi-
mating traces of words in self-adjoint elements in a generic tracial C*-algebra
(A, τ) by traces of words in Hermitian matrices.

The proof of the above theorem uses the fact that there are trace preserv-
ing embeddings of matrix algebras into (Rω, τω) in such a way that every
finite set of elements in Rω can be approximated in a good sense by matrices
in the image.

Here is the consequence of CEP that the paper MIP*=RE contradicts.
By an (n, k) projection valued measure((n,k)-PVM) in A we mean a set

of nk projections {ex,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k} ⊆: A with
∑k

a=1 ex,a = IA
for every x.

Theorem 1.17 (Dykema-P[1]). If CEP has an affirmative answer, then for
every (A, τ), every (n, k)-PVM {ex,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k} ⊆ A and every
ε > 0, there is a matrix algebra Md and an (n, k)-PVM {Ex,a : 1 ≤ x ≤
n, 1 ≤ a ≤ k} ⊆Md such that

|τ(ex,aey,b)− τd(Ex,aEy,b)| < ε.

The converse of this result is also true, but it uses other deeper results,
see [1, Theorem 3.7].

We sketch the key ideas of the proof. The proof that we present here is
more direct than given in [1], but a bit longer.

If CEP holds, then there are matricial microstates. So there is some ma-
trix algebra Md and approximating self-adjoint contraction matrices {Hx,a :
1 ≤ x ≤ n, 1 ≤ a ≤ k} ⊆ Md. We need to somehow replace these generic
self-adjoint matrices by a (n, k)-POVM.

First note that since e2x,a = ex,a, every word in the ex,a’s can be replaced

by a word in e2x,a which is approximated by the corresponding word in Px,a =

H2
x,a. So, by doubling the word length, without loss of generality, we may

assume that we have positive contractions {Px,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k} for
our microstate.

Using words of length 2 in these new generators, we may assume that
trd(Px,a) ≈ τ(ex,a) and trd(P

2
x,a) ≈ τ(e2x,a) = τ(ex,a). Thus, trd(Px,a −
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P 2
x,a) ≈ 0 and this is enough to imply that “most” of the eigenvalues of Px,a

are clustered around 0 and 1.
So we replace Px,a by the projections Ex,a onto the subspace of eigenvalues

“near” to 1.
Next we show that for a 6= b,

trd(Ex,aEx,b) ≈ trd(Px,aPx,b) ≈ τ(ex,aex,b) = 0,

and this allows us to replace the Ex,a by nearby projections satisfying
Ex,aEx,b = 0.

Finally, since trd(
∑

aEx,a) ≈ τ(
∑

a ex,a) = 1 a further approximation
allows us to assume that

∑
aEx,a = Id.

Problem 1.18. Let P ∈ Md be a positive contraction and assume that
trd(P −P 2) < ε. Prove that if we let E be the projection onto the eigenspace
of all eigenvalues of P that are greater than 1−

√
ε, then

trd(|E − P |) < 2
√
ε.

(Hint: First calculate how many eigenvalues of P can lie in the interval
[
√
ε, 1−

√
ε].)

Proof. Let 1 ≥ λ1 ≥ · · · ≥ λd ≥ 0 denote the eigenvalues of P . Note that if
λ ∈ [

√
ε, 1−

√
ε], then λ− λ2 ≥

√
ε− ε. If P has r eigenvalues in this range

then
r(
√
ε− ε) ≤

∑
i=1

λi − λ2i = Tr(P − P 2) < dε.

Hence,

r <
dε√
ε− ε

=
d
√
ε

1−
√
ε
.

Say that 1 ≥ λ1 ≥ · · ·λk ≥ 1 −
√
ε, so that E is the projection onto the

eigenspace of these eigenvalues. Then

Tr(|E − P |) =
∑

λi≥1−
√
ε

(1− λi) +
∑

√
ε≤λi≤1−

√
ε

λi +
∑
λi≤
√
ε

λi ≤

k
√
ε+ r(1−

√
ε) + (d− k − r)

√
ε < (d− r)

√
ε+ d

√
ε,

and the result follows. �

2. The Problems of Tsirelson and Kirchberg

Kirchberg proved that CEP had an affirmative answer if and only if there
was a unique norm on the tensor products of certain group C*-algebras. We
won’t spend much time on this equivalence here, since it is not essential to
our presentation. But it was very important to further developments. Scholz
and Werner were the first to realize that Kirchberg’s problem was related
to a question raised by Tsirelson about the mathematical description of
quantum correlations.

The statement below is slightly more general than can be found in [8] but
is an easy extension.
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Theorem 2.1 (Kirchberg). Let C be the set of groups that are free products
of cyclic groups, other than Z2 ? Z2. Then the following are equivalent:

(1) CEP has an affirmative answer,
(2) for every pair of groups, G,H ∈ C, there is a unique C*-norm on

C∗(G)⊗ C∗(H),
(3) there exists a pair of groups G,H ∈ C, such that there is a unique

C*-norm on C∗(G)⊗ C∗(H).

When we refer to Kirchberg’s problem(s) we are referring to (2) or (3).
We now turn our attention to Tsirelson’s problem.

Suppose that Ali
Suppose that Alice and Bob have separated, isolated labs and they can

each perform one of nA, respectively, nB, quantum measurements and each
measurement has, respectively, kA and kB outcomes. We let p(a, b|x, y)
denote the conditional probability density that Alice gets outcome a and
Bob gets outcome b, when the perform measurements x and y, respectively.
Such densities are also called quantum correlations and Tsirelson was
interested in mathematical descriptions of the set of all such conditional
densities.

It turns out that the axiomatic quantum theory allows for several possi-
ble mathematical descriptions of these sets of densities and Tsirelson was
interested in whether these were all the same. So we start with the possible
descriptions.

The basic quantum model assumes that Alice and Bob labs are described
by finite dimensional state spaces, HA,HB and that the state of their com-
bined labs is given by a unit vector ψ ∈ HA⊗HB. Alice’s and Bob’s measure-
ments are each given by an (n, k)-POVM, {Ex,a : 1 ≤ x ≤ nA, 1 ≤ a ≤ kA}
and {Fy,b : 1 ≤ y ≤ nB, 1 ≤ b ≤ kB}, which means we have families of
projections such that

kA∑
a=1

Ex,a = IHA
, ∀x, and

kB∑
b=1

Fy,b = IHB
,∀y,

and
p(a, b|x, y) = 〈ψ|(Ex,a ⊗ Fy,b)ψ〉.

We let Cq(nA, nB, kA, kB) denote the set of all p(a, b|x, y) that can be
obtained as above, which we call the quantum correlations or quantum
densities. Note that since 0 ≤ p(a, b|x, y) ≤ 1 that we can always regard
Cq(nA, nB, kA, kB) as a subset of the compact set [0, 1]nAnBkAkB . Generally,
we shall be interested in the case that nA = nB = n and kA = kB = k, in
which case we shorten this to Cq(n, k).

A slightly more general model is to allow ḨA and HB to be arbitrary
Hilbert spaces in which case we denote this larger set by Cqs(nA, nB, kA, kB)
where the subscript stands for quantum spatial.

There is no reason that either of these sets needs to be closed. However,
a nice result that uses C*-algebra theory is that they both have the same
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closure and we set

Cqa(nA, nB, kA, kB) := Cq(nA, nB, kA, kB)− = Cqs(nQ, nB, kA, kB).

These are called the quantum approximate correlations.
An even more general model is to assume that the combined state space

of Alice and Bob does not decompose as a tensor product but instead that
it is a single Hilbert space H so that they each have POVM’s on this space,

{Ex,a : 1 ≤ x ≤ nA, 1 ≤ a ≤ kA} ⊆ B(H), {Fy,b : 1 ≤ y ≤ nB, 1 ≤ b ≤ kB} ⊆ B(H),

with the property that Ex,aFy,b = Fy,bEx,a, ∀x, y, a, b. We call this a com-
muting model. Note that it is only Alice’s operators that must commute
with Bob’s operators. There is no requirement that Alice’s operators com-
mute among themselves for different inputs.

The set of all

p(a, b|x, y) = 〈φ|Ex,qFy,bφ〉,
that can be obtained in this manner for some commuting model and some
unit vector φ is denoted Cqc(nA, nB, kA, kB) and called the quantum com-
muting correlations.

The explanation for this commuting hypothesis is that the outcome should
not depend on the order of applying their measurements. Note that if in the
tensor cases we have that

Ex,a ⊗ Fy,b = (Ex,a ⊗ IHB
)(IHA

⊗ Fy,b) = (IHA
⊗ Fy,b)(Ex,a ⊗ IHB

).

so it is a commuting correlation. Thus, we have

Cq(nA, nB, kA, kB) ⊆ Cqs(nA, nB, kA, kB) ⊆ Cqa(nA, nB, kA, kB) ⊆ Cqc(nA, nB, kA, kB).

In the case that nA = nB = kA = kB = 2, Tsirelson proved that these
sets are all equal, and wondered if this could be true more generally.

The first great insight was [?] who noted the connection between Kirch-
berg’s problems and Tsirelson’s problems in a short note. This was then
developed fully in [6] and [9].

Theorem 2.2 (Junge, Navascues, Palazuelas, Perez-Garcia, Scholz, Werner[6];
Ozawa[9]). Kirchberg’s problems(and consequently CEP) have an affirmative
answer if and only if

Cqa(n, k) = Cqc(n, k), ∀n, k.

Thuis, one of the problems introduced by Tsirelson, is equivalent to the
CEP. This ignited a lot of interest in the study of the relationship between
these various models for correlation.

The first breakthrough was due to Slofstra.

Theorem 2.3 (Slofstra [11]). For n, k large enough, the set Cq(n, k) is not
closed.
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The values of n, k for Slofstra’s proof to apply seem to be n ∼ 200, k ∼
8. Shortly after Slofstra’s result it was found that this non-closure is true
even for small values and how pathologically non-closed these sets are was
revealed.

Theorem 2.4 (Dykema-P-Prakash[2]). The sets Cq(n, k) are not closed for

every n ≥ 5, k ≥ 2. Let
√
5−1
2
√
5
≤ t ≤

√
5+1
2
√
5

and for 0 ≤ a, b ≤ 1, 1 ≤ x, y ≤ 5

set

p(0, 0|x, x) = t, p(0, 1|x, x) = p(1, 0|x, x) = 0, p(1, 1|x, x) = 1− t,

and for x 6= y, set

p(0, 0|x, y) =
1

4
t(5t− 1), p(0, 1|x, y) = p(1, 0|x, y) =

5

4
t(1− t),

p(1, 1|x, y) =
1

4
(1− t)(4− 5t).

Then p ∈ Cqa(5, 2) for all t in this interval, but p ∈ Cq(5, 2) only for t is
rational.

Note that this is a nice continuous path of correlations pt but to “decide”
if pt belongs to Cq(5, 2) one must be able to decide if t is rational. For
example it is still unknown if e+π is rational. So we can write down formal
expressions for t for which it is still unknown if pt belongs to Cq(5, 2).

By Tsirelson’s results, Cq(2, 2) is closed, but it is still not known if Cq(3, 2)
and Cq(4, 2) are closed.

The paper MIP*=RE proved that there exists n, k such that Cqa(n, k) 6=
Cqc(n, k) and hence by [6] CEP has a negative answer. For the purposes of
proving that CEP is negative one only needs the implications:

CEP affirmative =⇒ KP affirmative =⇒ Cqa(n, k) = Cqc(n, k), ∀n, k

and the second implication is not too difficult for students with sufficient
background. However, the first implication, Kirchberg’s result, is quite hard.
The relevant free group in this setting is the free product of n copies of the
cyclic group of order k, denoted F(n, k).

The following problems indicate the connection between free groups and
these correlations.

Problem 2.5. Let ω = e2πi/k. Given projections Ea, 1 ≤ a ≤ k with∑k
a=1Ea = I, show that

U =

k∑
a=1

ωaEa,

is a unitary of order k. Conversely, if U ∈ B(H) is a unitary with Uk = I
and we set

Ea =
k∑
b=1

(ω−aU)b,
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then these are orthogonal projections summing to I. Use this to show that
there is a correspondence between (n, k)-PVM’s and representations of F(n, k).

Problem 2.6. (This is for students with a background in C*-algebras) Show
that the sets Cqc(n, k) and Cq(n, k) correspond to two families of representa-
tions of F(n, k)×F(n, k), that these two families of representations yield two
possibly different seminorms on C∗(F(n, k)) ⊗ C∗(F(n, k)). Finally, deduce
that if these two seminorms are equal, then Cqa(n, k) = Cqc(n, k).

To complete the proof that if KP is affirmative, then these correlation
sets are equal, one needs to know that these seminorms are actually norms.
The fact that these are indeed norms follows from the fact that the group
F(n, k) is residually finite dimensional(RFD).

3. Synchronous Correlations and a Simpler Refutation of CEP

In these lectures we will show a proof that CEP is negative that avoids
the use of Kirchberg’s equivalences and instead uses 1.17. We will achieve
this by using a connection between traces and correlations discovered in [10].

A correlation p ∈ Cqc(n, k) is called synchronous provided that

p(a, b|x, x) = 0, ∀a 6= b.

Thus, whenever Alice and Bob simultaneously perform the same experiment,
they must get the same outcome. We use a superscript s for the subset of
synchronous correlations.

Here is the key theorem connecting traces and synchronous densities.

Theorem 3.1 (P-Severini-Stahlke-Todorov-Winter [10]). (1) p ∈ Csqc(n, k)
if and only if there exists a tracial C*-algebra (A, τ) and an (n, k)-
PVM {ex,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k} in A such that

p(a, b|x, y) = τ(ex,aey,b).

(2) p ∈ Cq(n, k) if and only if in the above representation we can assume
that A is finite dimensional.

We sketch one of the key ideas of the proof. Suppose that we have written

p(a, b|x, y) = 〈φ|Ex,aFy,bφ〉,

then

1 =
k∑

a,b=1

p(a, b|x, x) =

k∑
a=1

p(a, a|x, x) =

k∑
a=1

〈Ex,aφ|Fx,aφ〉 ≤

k∑
a=1

‖Ex,aφ‖ · ‖Fx,aφ‖ ≤ (
k∑
a=1

‖Ex,aφ‖2)1/2(
k∑
a=1

‖Fx,aφ‖2)1/2 = 1.

Thus, the inequality is an equality and this in turn implies that Ex,aφ =
Fx,aφ, ∀x, a.
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Using this one shows that if we let A be the C*-algebra generated by
{Ex,a : 1 ≤ x ≤ n, 1 ≤ a ≤ k} and let τ : A → C be the state given by
τ(X) = 〈φ|Xφ〉, then τ(XY ) = τ(Y X), i.e., τ is a trace.

This proves one direction of (1). The converse, that setting p(a, b|x, y) =
τ(Ex,aEy,b) when τ is a trace defines an element of Cqc(n, k) is a standard
argument for experts in C*-algebras.

Note that if p ∈ Csq (n, k) then the Ex,a would all be matrices and so A
would be a finite dimensional C*-subalgebra of this matrix algebra. How-
ever, this does not imply that τ is the usual trace, unlike full matrix algebras
where the trace is unique, subalgebras can have many traces.

However, this last result allows us to restate 1.17 as follows:

Theorem 3.2 (Dykema-P). If CEP has an affirmative answer, then for
every n, k the closure of Csq (n, k) is equal to Csqc(n, k).

To see this note that by 1.17, every p ∈ Csqc(n, k) can be approximated
by traces on the full matrix algebra Md of some (n, k)-PVM’s in Md for d
sufficiently large.

The results of MIP*=RE, using the theory of games, imply that for some
n, k there is an element of Csqc(n, k) that is not in the closure of Cq(n, k).
Thus, taking this fact as a given, we have given a fairly complete sketch
of why their results imply that the matricial microstates version of CEP is
false.

Our next goal is to expand on the topic of games and, especially, perfect
strategies for games and values of games. But before doing that we state,
without sketching proofs, the deeper results about synchronous correlations
that give rise to the stronger refutation of CEP.

Note that the closure of Csq (n, k), denoted (Csq (n, k))− is a subset of
Csqa(n, k), since the second set is the set of correlations that are limits of
sequences of (not necessarily synchronous) correlations, whose limit is syn-
chronous. The results of [10] also leads one to wonder about characteriza-
tions of the other synchronous correlation sets. These questions were all
answered in [7].

Theorem 3.3 (Kim-P-Schafhauser). We have the following:

(1) (Csq (n, k))− = Csqa(n, k), ∀n, k,
(2) Csq (n, k) = Csqs(n, k), ∀n, k,
(3) p ∈ .Csqa(n, k) if and only if there exists an (n, k)-PVM {ex,a : 1 ≤

x ≤ n, 1 ≤ a ≤ k} ⊆ Rω such that

p(a, b|x, y) = τω(ex,aey,b).

.

Statement (1) has been given a more direct proof in [12]. In contrast to
(2), it is known that for n ≥ 4, k ≥ 3 that Cq(n, k) ( Cqs(n, k), see [?]. The
proof of (3) uses the deep theory of amenable traces developed by Kirchberg.
For more on amenable traces see the work of Musat-Rordam.
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