
COPENHAGEN PRE-COURSE

VERN I. PAULSEN

Abstract. These notes contain much of the mathematics that I will
be discussing and/or assuming you are familiar with for my lectures in
Copenhagen.

Contents

1. Hilbert Spaces

All vector spaces will be over C unless specified otherwise. Given a vector
space V a map B : V × V → C is sesquilinear provided:

• B(v1 + v2, w) = B(v1, w) +B(v2, w)
• B(v, w1 + w2) = B(v, w1) +B(v, w2),
• ∀λ ∈ C, B(λv,w) = B(v, w), B(v, λw) = λB(v, w).

We call B positive semidefinite provided that B(v, v) ≥ 0,∀v ∈ V and
positive(or positive definite) provided that B(v, v) > 0 for all v 6= 0. A
positive sesquilinear map is called an inner product and in this case we
generally write

B(v, w) = 〈v|w〉.

Proposition 1.1 (Cauchy-Schwartz Inequality). Let B : V × V → C be

sesquilinear and positive semidefinite, then B(v, w) = B(w, v) and

|B(v, w)|2 ≤ B(v, v)B(w,w).

Corollary 1.2. Let B : V ×V → C be positive semidefinite and sesquilinear,
then

• {x : B(x, x) = 0} = {x : B(x,w) = 0∀w} is a subspace of V that we
denote by N ,
• there is a well-defined inner product on the quotient space V/N given

by
.
B (x+N , y +N ) = B(x, y).

Givne an inner product on V if we set

‖v‖ = 〈v|v〉1/2,
1
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then this is a norm on V . When (V, ‖ · ‖) is a complete normed space with
respect to the norm coming from an inner product then we call V a Hilbert
space.

If V is a HIlbert space then a set of vectors S is called orthonormal(o.n.)
provided that v ∈ S =⇒ ‖v‖ = 1 and v, w ∈ S, v 6= w =⇒ 〈v|w〉 = 0.
A set S is called an orthonormal basis(o.n.b.) provided that it is an
orthonormal set and it is maximal among all orthonormal sets. i.e., S ⊆ T
and T also o.n. implies that S = T .

Theorem 1.3 (Parseval). Let H be a HIlbert space, {ea : a ∈ A} an o.n.b.,
then for any h ∈ H,

(1) ‖h‖2 =
∑

a∈A |〈ea|h〉|2,
(2) h =

∑
a∈A〈ea|h〉ea.

We need to explain what these unordered sums mean. For example 2)
means that given ε > 0 there exists a finite set F0 ⊆ A such that if F is any
finite set with F0 ⊆ F ⊆ A, then

‖h−
∑
a∈F
〈ea|h〉ea‖ < ε.

While 1) gives that for any ε > 0 there is a finite set F0 such that for any
finite set F , F0 ⊆ F ⊆ A we have that

0 ≤ ‖h‖2 −
∑
a∈F
|〈ea|h〉|2 < ε.

A good example to keep in mind is that

∞∑
n=1

(−1)n

n
,

converges while ∑
n∈N

(−1)n

n
,

does not converge.

Proposition 1.4 (Hilbert Space Dimension). Let H be a HIlbert space and
let {ea : a ∈ A} and {fb : b ∈ B} be two o.n.b.’s for H. Then there is a
one-to-one, onto function,

g : A→ B.

The existence of such a function g is the definition of what it means for
the sets A and B to have the same cardinality. So this statement is also
written as

card(A) = card(B),

and we denote this number by dim(H) or sometimes dimHS(H). We will
sometimes use the following.
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Proposition 1.5. Let H be a Hilbert space. Then H ha an o.n.b. that is
at most countable if and only if H is separable as a metric space, i.e., has a
countable dense subset.

1.1. Direct Sums. Given two Hilbert spaces H and K, we set

H⊕K = {(h, k) : h ∈ H, k ∈ K}.

This is a vector space with (h1, k1) + (h2, k2) = (h1 + h2, k1 + k2), and
λ(h, k) = λh, λk). If we set

〈(h1, k1)|(h2, k2)〉 = 〈h1|h2〉H + 〈k1|k2〉K,

then this is an inner product that makes the vector space H ⊕ K into a
Hilbert space, called the direct sum. Note that

dim(H⊕K) = dim(H) + dim(K),

which justifies the notation a bit.
We set

H(n) := H⊕H⊕ · · ·H(n copies),

which denotes the direct sum of n copies of H with itself. When we want to
form a direct sum of infinitely many copies of H with itself we cannot use
all posible tuples, because the inner products would not converge. Instead
we set

H(∞) := {(h1, h2, . . .) : hn ∈ H and
∑
n∈N
‖hn‖2 < +∞},

with inner product,

〈(h1, h2, . . .)|(k1, k2, . . .)〉 :=
∑
n∈N
〈hn|kn〉.

1.2. Tensor Products. Given two Hilbert spaces, H and K, let H ⊗ K
denote the tensor product of these two vector spaces. Given u =

∑n
i=1 hi⊗ki

and v =
∑k

j=1 xj ⊗ yj in H⊗K, we set

〈u|v〉 =

n,k∑
i,j=1

〈hi|xj〉H · 〈ki|yj〈K.

This turns out to define an inner product. If one of the two Hilbert spaces
is finite dimensional, then this space is already complete in this inner prod-
uct, but when they are both infinite dimensional, this space is not complete.
However, we still use clH⊗K to denote the Hilbert space that is the comple-
tion. (Some authors prefer to use H⊗K for the vector space tensor product
and H⊗K for the completion. Other authors use H�K for the vector space
tensor product and H⊗K for its completon.)

Te following summarizes some of the key properties of the tensor product.

Theorem 1.6. Let H and K be Hilbert spaces.
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(1) If {ea; a ∈ A} is an o.n.b. for H and {fb : b ∈ B} is an o.n.b. for
K, then {ea ⊗ fb : a ∈ A, b ∈ B} is an o.n.b. for H⊗K.

(2) dim(H⊗K) = dim(H) · dim(K).
(3) Given u ∈ H ⊗K there exist unique vectors hh ∈ H such that

u =
∑
b∈B

hb ⊗ fb.

Similarly, there exist unique vectors ka ∈ K such that

u =
∑
a∈A

ea ⊗ ka.

Also,

‖u‖2 =
∑
b∈B
‖hb‖2 =

∑
a∈A
‖ka‖2.

1.3. Identifying direct Sums and Tensor Products. We shall often
use the following identification. Let H be a Hilbert space and let Cn be the
usual n dimensional Hilbert space. Fix some o.n.b. for Cn, f1, ..., fn. We
define

U : H(n) → H⊗ Cn,
by setting

U((h1, ..., hn)) =
n∑
j=1

hj ⊗ fj .

This map is one-to-one, onto and inner product preserving, namely

〈U(h1, ..., hn))|U((k1, ..., kn))〉H⊗Cn =
n∑
j=1

〈hj |kj〉H = 〈(h1, ..., hn)|(k1, ..., kn)〉H(n) .

Thus, as Hilbert spaces these spaces are identical. The map U is an example
of a unitary map, which we shall discuss more later.

1.4. Subspaces. Let H be a HIlbert space and let M ⊆ H be a vector
subspace that is also closed in the norm topology. In this case M is also a
Hilbert space. If we set

M⊥ := {h ∈ H : 〈h|m〉 = 0,∀m ∈M},
then M⊥ is also a closed vector subspace of H. Moreover, every h ∈ H has
a unique decomposition as h = m+ n with m ∈M and n ∈M⊥.

1.5. Bra–ket Notation. Generally, when we have a vector in Cn, for ease
of typing, we write it as a row vector v = (x1, ..., xn), yet when we think
of vectors and matrices we actually need v to be a column vector. For this
reason, matrix theorists really like to think of vectors as columns. Also given
another vector w = (y1, ..., yn), the inner product is

〈w|v〉 =
m∑
i=1

yixi.
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Note that if we do think of v and w as columns, v = (x1, ..., xn)t and
w = (y1, ..., yn)t where t denotes the transpose, then the inner product is:

〈w|v〉 = w∗v,

where of course w∗ = (y1, ..., yn) is the conjugate transpose of the column
vector w. The fact that matrix theory really wants vectors to be columns
is also why we like to have our inner product conjugate linear on the left.
If we had made it conjugate linear on the right, then we would have had
〈w|v〉 = v∗w !

Physicists get around this ambiguity with their bra-ket notation. For-
mally, they always denote vectors by |v〉, called the “ket of v”, and the
linear functional

fw : H → C, fw(v) = 〈w|v〉,
induced by the vector w as 〈w|, called the “bra of w”. This makes the inner
product,

〈w||v〉.
In my notation, |v〉 = v and 〈w| = fw = w∗.
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2. Operator Theory

Let H and K denote Hilbert spaces. We let B(H,K) denote the set of
bounded, linear maps from H to K. Recall that T : H → K bounded means
that,

‖T‖ := sup{‖Th‖K : h ∈ H, ‖h‖H = 1} = sup{‖Th‖K
‖h‖H

: h 6= 0} < +∞.

When H = K, we abbreviate, B(H,H) = B(H).
Given T : Cd → Cr we can always represent T as multiplication by an

r × d matrix (ti,j) where

ti,j = 〈ei|Tej〉.
A useful bound is that

‖T‖ ≤
( d∑
j=1

r∑
i=1

|ti,j |2
)1/2

:= ‖T‖2,

where this latter quantity is the norm of the matrix viewed as a vector in
the Hilbert space Crd.

2.1. Adjoint. Given T ∈ B(H,K) there is a unique operator R ∈ B(K,H)
satisfying

〈k|Th〉K = 〈Rk|h〉H.
This operator is called the adjoint of T and is denoted by T ∗ := R.

When T is represented by the matrix (ti,j), then T ∗ is represented by the
matrix that is the conjugate, transpose, T ∗ = (tj,i).

There are several different types of operators that play an important role.
We review their names and some characterizations.
V ∈ B(H,K) is an isometry provided ‖V h‖K = ‖h‖H, ∀h ∈ H.

Proposition 2.1. T.F.A.E.

(1) V is an isometry,
(2) V is inner product preserving, i.e.,

〈V h1|V h2〉K = 〈h1|h2〉H,∀h1, h2 ∈ H,

(3) V ∗V = IH.

A map U ∈ B(H,K) is called a unitary provided U is an isometry and
is onto.

Proposition 2.2. T.F.A¿E.

(1) U is a unitary,
(2) U and U∗ are isometries,
(3) U∗U = IH and UU∗ = IK.
(4) U is invertible and U−1 = U∗.
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A map H ∈ B(H) is called Hermitian or self-adjoint provided that
H = H∗.

A map N ∈ B(H) is called normal provided that NN∗ = N∗N.
A map P ∈ B(H) is called a projection provided that there is a closed

subspace M⊆ H such that Ph = m where h = m+ n, m ∈ M, n ∈ M⊥ is
the unique decomposition of h.

Given T ∈ B(H,K) we set

R(T ) = {Th : h ∈ H},

which is a subspace of K that we call the range of T .

Proposition 2.3. P is a projection if and only if P = P ∗ = P 2 and in this
case M = R(P )

A map F ∈ B(H,K) is called finite rank provided that R(F ) is finite
dimensional.

Proposition 2.4. F is finite rank if and only if there exist finitely many
vectors, h1, ..., hn ∈ H and k1, ..., kn ∈ K such that

Fh =
n∑
i=1

〈hi|h〉ki.

In bra-ket notation, F =
∑n

i=1 |ki〉 〈hi|.
Back to matrices. If h = (α1, ..., αn)t ∈ Cn and k = (β1, ..., βm)t ∈ Cm

then

kh∗ = |k〉 〈h| = (βiαj),

which is an m× n rank one matrix.
When ‖h‖ = 1, then

hh∗ = |h〉 〈h| = (αiαj),

is the rank one projection onto the span of h. If {v1, ..., vn} are orthonormal,
then

n∑
i=1

viv
∗
i =

n∑
i=1

|vi〉 〈vi| ,

is the projection onto the n-dimensional subspace that they span.
A map K ∈ B(H,K) is called compact provided that there is a sequence

of finite rank operators Fn ∈ B(H,K) such that

lim
n
‖K − Fn‖ = 0.

We let K(H,K) denote the set of compact operators from H to K.

Proposition 2.5. The set K(H,K) ⊆ B(H,K) is closed subspace in the
operator norm. If T ∈ B(H),K ∈ K(H,K) and R ∈ B(K), then RKT ∈
K(H,K).
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2.2. Spectrum and Functional Calculus. If T ∈ B(H) with H infinite
dimensional, then it is possible that T has no eigenvalues even when T = T ∗.

For example, if

H = `2N := {(a1, a2, .....) :
∑
n∈N
|an|2 < +∞},

then this space has an o.n.b. given by {en : n ∈ N} where en is the vector
that is 1 in the n-th coordinate and 0 elsewhere. The operator defined by

Sen = en+1

is called the forward unilateral shift and it is easy to show that it has no
non-zero eigenvector. However it’s adjoint, S∗ is the backwards unilateral
shift and satisfies

S∗en =

{
0 n = 1

en−1 n > 1
.

Given λ ∈ C, |λ| < 1, if we set

vλ = (1, λ, λ2, ...) =
∑
n∈N

λn−1en,

then S∗vλ = λvλ. Thus, although S has no eigenvectors, there is an eigen-
vector for S∗ for every point in the open unit disk.

In infinite dimensions the spectrum plays the role of the eigenvectors.
Given T ∈ B(H) the spectrum of T is the set

σ(T ) = {λ ∈ C| (T − λIH) is not invertible }.

Theorem 2.6. Let T ∈ B(H), then σ(T ) is a non-empty compact set and

σ(T ) ⊆ {λ ∈ C : |λ| ≤ ‖T‖}.

In fact,

sup{|λ| : λ ∈ σ(T )} = lim
n
‖Tn‖1/n.

This last equation is called the spectral radius formula.
Here are a few other facts about the spectrum that we shall often use.

Given a polynomial, p(z) = a0 + a1z + · · · + anz
n and T ∈ B(H) we set

p(T ) = a0IH + a1T + · · ·+ anT
n.

Theorem 2.7. Let T ∈ B(H).

(1) σ(p(T )) = {p(λ) : λ ∈ σ(T )}.
(2) If T = T ∗, then σ(T ) ⊆ R.
(3) If U is a unitary, then σ(U) ⊆ {λ : |λ| = 1}
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2.3. The Continuous Functional Calculus for a Hermitian Opera-
tor. Given a function f : S → C we set

‖f‖∞ = sup{|f(x)|; x ∈ S}.

Of course, this norm depends on the domain of the function but this will
always be clear from the context.

Proposition 2.8. Let H ∈ B(H), H = H∗. Then for every polynomial,

‖p(H)‖ = sup{|p(λ)| : λ ∈ σ(H)}.

Thus, ‖p(H)‖ = ‖p‖∞ where p is viewed as a function on σ(H).
Let C(σ(H)) denote the set of continuous functions on σ(H) ⊆ R. Recall

by the Stone-Weierstrass theorem that the polynomials are dense in this
set in ‖ · ‖∞. So given any continuous function f there is a sequence of
polynomial {pn} with limn ‖f − pn‖∞ = 0. From this it follows that this
sequence is Cauchy in norm, i.e., given ε > 0, for m,n sufficiently large,
‖pn − pm‖∞ < ε. But this means that the operators {pn(H)} are also
Cauchy in norm, since

‖pn(H)− pm(H)‖ = ‖pn − pm‖∞.

Hence, there will be an operator there will be an operator to which they
converge and this operator is denoted by f(H).

Thus, for each f ∈ C(σ(H)) we have an operator f(H). We summarize a
few of the properties of this construction below.

Theorem 2.9 (The Continuous Functional Calculus for a Self-Adjoint Op-
erator). Let H ∈ B(H), H = H∗. Then for every continuous function f on
σ(H), i.e., f ∈ C(σ(H)) there is an operator f(H) these satisfy:

• ‖f(H)‖ = ‖f‖∞,
• σ(f(H)) = {f(λ) : λ ∈ σ(H)},
• f, g ∈ C(σ(H)) =⇒ (fg)(H) = f(H)g(H), (f + g)(H) = f(H) +
g(H).

2.4. Positive Operators. An operator P ∈ B(H) is positive, denoted
P ≥ 0 provided that

〈h|Ph〉 ≥ 0, ∀h ∈ H.

Proposition 2.10. T.F.A.E.

• P ≥ 0,
• P = P ∗ and σ(P ) ⊆ [0,+∞),
• ∃X ∈ B(H) such that P = X∗X.

Given T ∈ B(H,K) we use the continuous functional calculus tp define

|T | = (T ∗T )1/2.

Note that, unlike numbers, generally, |T | 6= |T ∗|.
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Define continuous functions f+, f− : R→ R by

f+(t) =

{
t t ≥ 0

0 t < 0
and f−(t) =

{
0 t ≥ 0

−t t < 0
.

If H = H∗ then we apply the continuous functional calculus to define H+ =
f+(H) and H− = f−(H) and we see that

• H+ ≥ 0, H− ≥ 0,
• H = H+ −H−
• |H| = H+ +H−,
• H+H− = 0.

Theorem 2.11 (Polar Decomposition). Let T ∈ B(H,K), then there exists
a unique unitary W : R(|T |)− → R(T )− such that T = W |T |.

The proof essentially follows from the fact that

‖Th‖2 = 〈Th|Th〉 = 〈h|T ∗Th〉 = 〈h||T |2h〉 = 〈|T |h||t|h〉 = ‖|T |h‖2.

We can always extend W to an operator Ŵ : H → K by setting Ŵ equal
to 0 on R(|T |)⊥, i.e.,

Ŵ (|T |h+ k) = Th, ∀k ∈ R(|T |)⊥

and we will still have T = Ŵ |T |. This latter factorization is sometimes what
is meant by the polar decomposition.

Moreover, if dim(R(|T |)⊥) = dim(R(T )⊥) then one can also extend W
to be a unitary U : H → K with T = U |T |. When H = K = Cn, this is
always the case, so we may always factor a n×n matrix T as T = U |T | with
U a unitary.

3. More about K(H)

Theorem 3.1 (Positive Compact Operators). Let P ∈ K(H) with P ≥ 0.
Then there exists an o.n.b. {ψa : a ∈ A} for H consisting of eigenvectors
for P . Moreover, at most countably many of the corresponding eigenvalues
are non-zero and we may arrange the non-zero eigenvalues in a decreasing
sequence, λ1 ≥ λ2 ≥ ... with either at most finitely many eigenvalues non-
zero or limn λn = 0.

Given P as above, set FN =
∑N

n=1 λn |ψn〉 〈ψn| . Then FN ≥ 0 and is
finite rank, with

‖P − FN‖ = λN+1 → 0 as N → +∞.
Thus, we may write

P =

∞∑
n=1

λn |ψn〉 〈ψn| ,

and the converge of this series is in the norm.
Given any K ∈ K(H,K) by the polar decomposition we have that K =

W |K| and |K| ≥ 0 and compact. The non-zero eigenvalues of |K| written
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in decreasing order λ1 ≥ λ2 ≥ .... are called the singular values of K and
we set

sn(K) = λn.

If we let ψn denote the corresponding o.n. sequence of eigenvectors for |K|
and set φn = Wψn then these vectors are also o.n. and we may write

|K| =
∞∑
n=1

sn(K) |ψn〉 〈ψn| ,

which yields

K = W |K| =
∞∑
n=1

sn(K) |φn〉 〈ψn| .

This latter form is called the singular valued decomposition(SVD) of
K. It is essentially unique, except that in the case that a single non-zero
eigenvalue has multiplicity, then one could choose different o.n. vectors for
the corresponding eigenspace.

3.1. The Schatten p-Classes. For proofs of the results stated here see [?,
XI.9] or [?, III, Section 7]. Given 1 < p < +∞, we set

Cp(H,K) = {K ∈ K(H,K) :
∞∑
n=1

sn(K)p < +∞},

and for K ∈ Cp(H,K) we set

‖K‖p =
( ∞∑
n=1

sn(K)p
)1/p

.

Here are the key facts about these sets.

(1) For 1 < p < +∞, Cp(H,K) is a vector space.
(2) ‖ · ‖p is a norm on Cp(H,K) and it is complete in this norm, i.e., a

Banach space.
(3) If K ∈ C1(H) and we pick any o.n.b. {ea : a ∈ A} for H, then

Tr(K) :=
∑
a∈A
〈ea|Kea〉

converges and its value is independent of the o.n.b. chosen. We call
this the trace of K and for this reason we call C1(H) the trace
class operators.

(4) If 1 < p, q < +∞ with 1
p + 1

q = 1(called Holder conjugates) with

T ∈ Cp(H,K), R ∈ Cq(K,H), then RT ∈ C1(H), TR ∈ C1(K) and
Tr(RT ) = Tr(TR). Moreover,

|Tr(RT )| ≤ ‖T‖p‖R‖q.
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(5) Let p, q be Holder conjugates. If we fix R and define a linear func-
tional

fR : Cp(H,K)→ C, fR(T ) = Tr(RT ),

then fR is a bounded, linear functional with ‖fR‖ = ‖R‖q. Moreover,
every bounded linear functional on Cp(H,K) is of this form.

This identifies the dual space of Cp(H,K) with Cq(K,H) in an
isometric manner.

(6) If T ∈ B(H,K) and R ∈ C1(K,H), then RT ∈ C1(H) and TR ∈
C1(K) with Tr(RT ) = Tr(TR). The linear functional fT : C1(K,H)→
C is bounded with ‖fT ‖ = ‖T‖ and every bounded linear functional
on C1(K,H) arises in this manner. That is the dual space of C1(K,H)
can be identified with B(H,K) in this manner.

However, not every bounded linear functional on B(H,K) is of
the form fR for some R ∈ C1(K,H).

(7) For each R ∈ C1(K,H) the linear functional fR : K(H,K) → C
defined by fR(K) = Tr(RK) is bounded with ‖fR‖ = ‖R‖1 and
every bounded linear functional on K(H,K) is of this form. That
is the dual space of K(H,K) can be identified with C1(K,H) in this
manner.

An operator ρ ∈ B(H) is called a density operator provided that ρ ∈
C1(H), ρ ≥ 0 and Tr(ρ) = 1.

Proposition 3.2. Every element of C1(H) can be written as a linear com-
bination of 4 density operators.

Proof. We sketch the key ideas of this proof. First one shows that T ∈
C1(H) =⇒ T ∗ ∈ C1(H). From this it follows that T = H + iK with
H = (T + T ∗)/2 ∈ C1(H) and K = (T − T ∗)/2i ∈ C1(H). Next one shows
that H+, H−,K+,K− ∈ C1(H).

Finally, setting ρ1 = H+/Tr(H+), ρ2 = H−/Tr(H−), ρ3 = K+/Tr(K+),
and ρ4 = K−/Tr(K−) defines the four density operators. �

3.2. Tensor Products of Operators. Let Ri ∈ B(Hi,Ki), i = 1, 2, then
there exists a unique operator R1 ⊗R2 ∈ B(H1 ⊗H2,K1 ⊗K2) satisfying

(R1 ⊗R2)(h1 ⊗ h2) = (R1h1)⊗ (R2h2).

Moreover, ‖R1 ⊗R2‖ = ‖R1‖‖R2‖.
In the case that H + H1 = K1 and K = H2 = K2, if either dim(H) or

dim(K) is finite, then every element of B(H⊗K) is a sum of such elementary
tensors, but when they are both infinite dimensional this is not the case.

4. Basics of Quantum Viewpoint

4.1. Postulates of Quantum Mechanics. To each isolated physical sys-
tem, there corresponds a Hilbert space H, called the state space, and each
unit vector in H represents a possible state, called the state vector or pure
state.
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Quantum Measurements. When we want to observe a system, i.e.,
connect to the “outside world”, the system is no longer closed because we
interact with it. By closed, we mean “not interacting with anything outside
the system”. By open, we mean it is a piece of a larger system.

Quantum measurements are always described by a class of operators
{Mi}i=one of the outcomes.
The probability that we observe the outcome i, given that the system is in
state |ψ〉 before we measure, is given by pi = ‖Miψ‖2 and if we observe

the outcome i, then the system changes to the state Miψ
‖Miψ‖ . Moreover, as

the sum of the probabilities of all possible outcomes must equal 1, we have∑
i pi = 1.
Keeping in mind that quantum mechanics is inherently probabilistic, we

consider a quantum experiment with at most k possible outcomes. Let Hs
and Ho be Hilbert spaces representing the state space and the outcome
space, respectively, and let {Mi ∈ B(Hs,Ho) : 1 ≤ i ≤ k} be a collection
of bounded operators. If the system is in state ψ ∈ Hs, ‖ψ‖ = 1 before we
measure, then the probability that we observe the outcome i is given by
pi = ‖Miψ‖2 and if we observe the outcome i, then the system changes to

the state Miψ
‖Miψ‖ . Moreover, as the sum of the probabilities of all possible

outcomes must equal 1, we have
∑

i pi = 1. Hence,

1 =
k∑
i=1

pi =
k∑
i=1

‖Miψ‖2 =
k∑
i=1

〈Miψ|Miψ〉 =
k∑
i=1

〈ψ|M∗iMiψ〉 .

Since the above equality holds for every ψ ∈ H with ‖ψ‖ = 1, the following

lemma forces
∑k

i=1M
∗
iMi = I. If T ∈ B(H), then T = I ⇐⇒ 〈ψ|Tψ〉 = 1

for every ‖ψ‖ = 1.
Theoretically, given any class of operators {Mi ∈ B(Hs,Ho) : 1 ≤ i ≤ k}

such that
∑k

i=1M
∗
iMi = I, there is a k-outcome quantum experiment with

these measurement operators.

4.2. Measurement Systems and Distinguishable States. We include
a bit more in the notes than we covered in class to help those who are new
to this quantum viewpoint.

Definition 4.1. (Measurement System) Suppose that H and K are finite-
dimensional Hilbert spaces. A finite family {Mi : 1 ≤ i ≤ k} of operators
Mi : H → K is called a measurement system if

∑
iM

∗
iMi = I. If H = K,

we say that {Mi} is a measurement system on H.

Definition 4.2. (Perfectly Distinguishable States) A collection of states
{ψ1, . . . , ψN} ⊆ H is called perfectly distinguishable if there exists a mea-
surement system {Mi : 1 ≤ i ≤ k}, k ≥ N on H such that ‖Mi (ψj) ‖2 = δi,j
for i, j ∈ {1, ..., N}.

Theorem 4.3. A collection of states {ψ1, . . . , ψN} ⊆ H is perfectly distin-
guishable if and only if ψi ⊥ ψj for all i 6= j.
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Proof. ( =⇒ ) For the forward direction, let us assume that there is a
measurement system {Mi : 1 ≤ i ≤ N} such that ‖Mi (ψj) ‖ = δi,j for
i, j ∈ {1, ..., N}. Consider ψ1 and ψ2. ψ2 can then be expressed as ψ2 =
αψ1 + βη where η ⊥ ψ1, ‖η‖ = 1. Since 1 = ‖ψ‖2 = |α|2 + |β|2, we have
1 = ‖M2(ψ2)‖2 = ‖M2(αψ1 +βη)‖2 = |β|2‖M2(η)‖2 ≤ |β|2‖η‖2 = ‖β‖2 ≤ 1.
This forces the above inequalities to be equalities so that |β|2 = 1 which in
turn implies that α = 0 which means that ψ2 and η are collinear and hence
ψ2 ⊥ ψ1.

( ⇐= ) Let Mi be the (orthogonal) projection onto the one-dimensional
subspace spanned by ψi. Then Mi = M∗i = M∗iMi for i = 1, ..., N and∑N

i=1M
∗
iMi is the orthogonal projection onto span{ψ1, ..., ψN}. Let M0

be the orthogonal projection onto {ψ1, . . . , ψN}⊥. Then
∑N

j=0M
∗
jMj =∑N

j=0Mj = I. Furthermore, Mi (ψj) = δi,jψj for all i, j ∈ {1, ..., N}, so

that ‖Mi (φj) ‖2 = δi,j for all i, j ∈ {1, ..., N}. This proves that {Mi}Ni=0 is a
measurement system. �

Corollary 4.4. If dim(Hs) = N, then the system can have at most N
perfectly distinguishable states.

Theorem 4.5. Suppose that {ψ1, . . . , ψN} is a collection of linearly inde-
pendent states. Then there exists a measurement system {Mi : 0 ≤ i ≤ N}
such that for i 6= 0, ‖Mi(ψj)‖ 6= 0 if and only if i = j.

Proof. For i = 1, ..., N, let Vi = span {ψj : j 6= i}, and let Ei be the projec-

tion onto V ⊥i . Then for j 6= i, ψj ∈ Vi =⇒ Ei (ψj) = 0 =⇒ ‖Ei (ψj) ‖2 =
0. Now 0 ≤ Ei ≤ I =⇒ 0 ≤ E1 + · · · + EN ≤ N · I. Let Mi = 1√

N
Ei

for i = 1, ..., N. Then M∗iMi = 1
NEi, so

∑N
i=1M

∗
iMi = 1

N

∑N
i=1Ei ≤ I,

and hence I −
∑N

i=1M
∗
iMi ≥ 0. Now let M0 = (I −

∑N
i=1M

∗
iMi)

1
2 . Then∑N

i=0M
∗
iMi =

(
(I −

∑N
i=1M

∗
iMi)

1
2

)2
+
∑N

i=1M
∗
iMi = I, so {Mi}Ni=0 is a

measurement system. For i 6= 0, if j 6= i, then ‖Mi (ψj) ‖ = 1√
N
‖Ei (ψj) ‖ =

0. Therefore by contrapositive, ‖Mi (ψj) ‖ 6= 0 implies that i = j. Con-
versely, ‖Mi(ψi)‖ = 1√

N
‖Ei(ψi)‖ 6= 0 since ψi /∈ Vi and so it has non-zero

projection onto V ⊥i . �

So far we have talked about pure states, now we will talk about ensembles
(or mixed states).

4.3. Ensembles or Mixed States. As motivation for this topic, let {Mi : 1 ≤ i ≤ k}
be a measurement system with Mi : Hs −→ Ho. Suppose we have the state
ψ ∈ Hs as input. Recall that pi = ‖Mi (ψ) ‖2 should be interpreted as the
probability of observing the outcome i, and that if we do observe i, the

system is now in the state, Mi(ψ)
‖Mi(ψ)‖ . That is,

input:ψ ∈ Hs; output: Mi(ψ)
‖Mi(ψ)‖ with probability pi = ‖Mi (ψ) ‖2.
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So after observation, we will have what now looks like a mixed bag of states{
Mi(ψ)
‖Mi(ψ)‖

}
i
, with Mi(ψ)

‖Mi(ψ)‖ occurring with probability pi.

Definition 4.6. An ensemble of states, or a mixed state, is a finite collection
{ψi, pi : 1 ≤ i ≤ N} of states ψi with probabilities pi where ‖ψi‖ = 1, pi ≥ 0

and
∑N

i=1 pi = 1.

Suppose we have a measurement system {Mi : 1 ≤ i ≤ N} and an

ensemble of states {ψj , pj : 1 ≤ j ≤ k} with
∑k

j=1 pj = 1, then what is the
probability of observing the outcome i?
If ψj is our input, then the probability getting outcome i is ‖Mi(ψj)‖2. So,
the probability that we have outcome i is,

k∑
j=1

pj‖Mi(ψj)‖2.

In the next subsection we discuss a better way to compute the probabilities
of outcomes.

4.4. Von Neumann’s Notation: Density Matrices. For a given state
ψ ∈ Hs, ‖ψ‖ = 1, a typical unit vector in the one-dimensional subspace
spanned by ψ is given by eiθψ. In general eiθψ 6= ψ but for any mea-
surement Mj , we can see that ‖Mj(ψ)‖2 = ‖Mj(e

iθψ)‖2. This shows that
measurements don’t distinguish between different unit vectors from the one-
dimensional subspace spanned by the given state vector ψ and hence states
should really refer to one-dimensional subspace and not just a unit vector.
This means that the probabilities of outcomes really depend on the one-
dimensional subspace generated by a vector.

Replacing states by rank one projections and lengths by trace: Recall that
given a matrix A = (aij) ∈ Mn, the trace of that matrix is the sum of the
diagonal entries: Tr(Y ) =

∑
i aii. It is a popular fact that given any two

square matrices A and B of the same size, Tr(AB) = Tr(BA). The next
proposition establishes this fact for compatible non-square matrices as well.
Next, if ψ ∈ Cn, ‖ψ‖ = 1, and Pψ denotes the orthogonal projection onto the
subspace spanned by ψ, then Pψ = ψψ∗ = |ψ〉 〈ψ|. (Pψh = ψψ∗h = 〈ψ|h〉ψ
where 〈ψ|h〉 is the component of h in the direction of ψ.) Furthermore,

Tr(Pψ) = Tr(ψψ∗) = Tr(ψ∗ψ) = (ψ∗ψ) = 〈ψ|ψ〉 = 1.

Back to Ensemble: Let’s get back to the situation where we had a mea-
surement system {Mi : 1 ≤ i ≤ N} and an ensemble of states {ψj , pj : 1 ≤
j ≤ k} with

∑k
j=1 pj = 1. We know that the probability of observing the

outcome i is,
k∑
j=1

pj‖Mi(ψj)‖2.
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Simplifying this expression, we get

k∑
j=1

pj‖Mi(ψj)‖2 =

k∑
j=1

pj(Miψj)
∗(Miψj)

=

k∑
j=1

pjTr((Miψj)
∗(Miψj))

=
k∑
j=1

pjTr((Miψj)(Miψj)
∗)

=
k∑
j=1

pjTr(Miψjψ
∗
jM
∗
i )

=
k∑
j=1

pjTr(M
∗
iMiψjψ

∗
j )

=
k∑
j=1

Tr
(
M∗iMi(pjψjψ

∗
j )
)

= Tr

M∗iMi

 k∑
j=1

pjψjψ
∗
j

 .

Note that ψjψ
∗
j = Pψj

. If we set P =
∑k

j=1 pjψjψ
∗
j , then we have shown

that:

Theorem 4.7. Given an ensemble of states {ψj , pj : 1 ≤ j ≤ k} and a
measurement system {Mi : 1 ≤ i ≤ N}, the probability of observing the i-th

outcome is Tr (M∗iMiP ) where P =
∑k

j=1 pjψjψ
∗
j .

The operator P =
∑k

j=1 pjψjψ
∗
j associated to an ensemble of states is

called the Von Neumann density operator of the given ensemble.
We observe that:

(1) If two ensembles have the same density matrix, then we get the same
probability for outcomes for any measurement system.

(2) If {Mi : 1 ≤ i ≤ k} and {M̃i : 1 ≤ i ≤ k} are two measurement

systems such that for every i, M∗iMi = M̃∗i M̃i, then also we get the
same probability for outcomes for any ensemble.

The following example illustrates the first observation.

Example 4.8. If {u1, ..., uN} is an orthonormal basis for CN , then the
density matrix P for the ensemble {uj , 1

N : 1 ≤ j ≤ N} is given by P =∑N
j=1

1
N uju

∗
j = 1

N IN . If {ũ1, ..., ũN} is another orthonormal basis for CN ,

then the density matrix P̃ for the ensemble {ũj , 1
N : 1 ≤ j ≤ N} also turns
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out to be P̃ =
∑N

j=1
1
N ũj ũ

∗
j = 1

N IN . This example guarantees the existence
of two different ensembles with same density matrix.

Problem 4.9. Fix N ≥ 3 and let uj =

(
cos(2πjN )

sin(2πjN )

)
∈ C2. Prove that the

density matrix for the ensemble {uj , 1
N : 1 ≤ j ≤ N} is given by 1

2I2.

The above example shows that the density matrix does not distinguish be-
tween standard orthonormal basis or any other orthonormal basis as input.
So, for computing probabilities, it is the density matrix which is important
and not the ensemble.

At this point, let us pause for a while and try to visualise quantum ex-
periments in terms of density matrices. Recall that, if a system is initially
in the state ψ, that is, ψ ∈ Hs, ‖ψ‖ = 1, and if there is given a measurement
system {Mi : 1 ≤ i ≤ k}, then after measurement, the system becomes

the ensemble
{

Mi(ψ)
‖Mi(ψ)‖ , ‖Miψ‖2 : 1 ≤ i ≤ k

}
. By associating density matri-

ces with the states of the system before and after the measurement we note
that the input is the state ψ and the density matrix corresponding to it is
given by P = ψψ∗. After the measurement, the system becomes the ensem-

ble
{

Mi(ψ)
‖Mi(ψ)‖ , ‖Miψ‖2 : 1 ≤ i ≤ k

}
, and hence the output is this ensemble

which is identified by the density matrix

k∑
i=1

‖Miψ‖2
(

Mi (ψ)

‖Mi (ψ) ‖

)(
Mi (ψ)

‖Mi (ψ) ‖

)∗

=
k∑
i=1

(Miψ)(Miψ)∗ =
k∑
i=1

(Miψ)(ψ∗M∗i )

=

k∑
i=1

Mi(ψψ
∗)M∗i =

k∑
i=1

MiPM
∗
i .

Thus, in terms of density matrices, we observed that if input is identified by
the density matrix P , then after measurement, the output is identified by

the density matrix
∑k

i=1MiPM
∗
i . This observation is the key to our next

theorem.

Theorem 4.10. Given an ensemble of states {ψj , pj : 1 ≤ j ≤ J} and a
measurement system {Mi : 1 ≤ i ≤ k} on Hs with density matrix P =∑J

j=1 pjψjψ
∗
j , then after measurement, the system becomes the ensemble{

Mi(ψj)
‖Mi(ψj)‖ , pj‖Miψj‖2 : 1 ≤ i ≤ k, 1 ≤ j ≤ J

}
with density matrix

∑k
i=1MiPM

∗
i .
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Proof. The density matrix for the output ensemble is given by

J∑
j=1

k∑
i=1

pj ||Miψj ||2
(

Miψj
||Miψj ||

)(
Miψj
||Miψj ||

)∗
=

J∑
j=1

k∑
i=1

pj(Miψj)(Miψj)
∗

=
k∑
i=1

J∑
j=1

Mi(ψjpjψ
∗
j )M

∗
i

=
N∑
n=1

MiPM
∗
i . �

So, a measurement system takes density matrix as input and yields an-
other density matrix as output.

4.5. Axiomatization of Quantum Channels. We are now in a position
to axiomatize quantum channels.

(1) A quantum channel should be a linear map,

Φ : C1(Hi)→ C1(Ho).

(2) If ρ ∈ C1(Hi) is a density operator, then Φ(ρ) ∈ C1(Ho) is a density
operator.

The next axiom has to do with how quantum systems combine.
Suppose we have two laboratories A and B (for Alice and Bob re-
spectively). We will denote by Hs,A,Hs,B,Ho,A,Ho,B, respectively,
the state space of lab A, the state space of lab B, the outcome space
of lab A, and the outcome space of lab B.

Suppose that each lab has a measurement system. Let {Mi :
Hs,A −→ Ho,A}Ki=1 be the measurement system of A and {Nj :

Hs,B −→ Ho,B}Jj=1 be the measurement system of B. These de-
fine quantum channels,

ΦA(ρA) =
K∑
i=1

MiρAM
∗
i ΦB(ρB) =

J∑
j=1

NjρBN
∗
j .

If we wish to view these two labs as one single lab, say lab AB,
then the state space of this lab isHs,AB = Hs,A⊗Hs,B and the output
space would be Ho,AB = Ho,A ⊗ Ho,B with measurement operators
{Mi ⊗ Nj : Hs,AB −→ Ho,AB}, so that there are KJ outcomes.
Note that

∑
i,j(Mi⊗Nj)

∗(Mi⊗Nj) = I. This measurement system

of lab AB, then, defines a quantum channel ΦAB : C1(Hs,AB) −→
C1(Ho,AB) given by

ΦAB(W ) =
∑
i,j

(Mi ⊗Nj)W (Mi ⊗Nj)
∗.

This motivates the next axiom.
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(3) Given quantum channels, ΦA : C1(HA,i) → C1(HA,o) and |PhiB :
C1(HB,i)→ C1(HB,o) there should exist a quantum channel

ΦAB : C1(HA,i ⊗HB,i)→ C1(HA,o ⊗HB,o)

satisfying ΦAB(ρA ⊗ ρB) = ΦA(ρA)⊗ ΦB(ρB).
Finally, doing nothing should be a quantum channel:

(4) Given any Hilbert space, the identity map from id : C1(H)→ C1(H)
is a quantum channel.

Since every positive operator in C1(H) is a positive multiple of a density
operator, the first two axioms imply that a quantum channel must send
positive operators to positive operators, such a map is called a positive
map. The fact that density operators span C1(H) together with the fact that
density operators are mapped to density operators implies that a quantum
channel must preserve traces, i.e.,

Tr(Φ(W )) = Tr(W ).

We will see that axioms 3 and 4 imply that a quantum channel must be
“completely” positive. A concept that we need to first discuss.

5. Matrix Norm, Matrix Order, and Operator Matrices

Suppose that T : V1 −→ W1 and R : V2 −→ W2 are linear maps between
vector spaces, then there is a linear map T ⊗ R : V1 ⊗ V2 −→ W1 ⊗ W2

defined by (T ⊗R)(v1 ⊗ v2) = T (v1)⊗R(v2) for all v1 ∈ V1 and v2 ∈ V2.
If H and K are finite-dimensional Hilbert spaces with X : H → H and
Y : K → K, linear. Then there is a well-defined linear map denoted X ⊗Y :
H⊗K → H⊗K satisfying (X ⊗ Y )(h⊗ k) = X(h)⊗ Y (k).

If T : H −→ H, possibly infinite dimensional, and R : Cn −→ Cn are
linear, then we can define T ⊗R : H⊗Cn −→ H⊗Cn, in a similar way. Our
goal in this subsection is to find a matrix representation for the map T ⊗R
in this setting. To do this, let us first address the following question:

I. What is a natural identification of a typical element of H⊗ Cn?
Recall that if we take the canonical orthonormal basis {e1, ..., en} for Cn,
then every vector u ∈ H ⊗ Cn has a unique representation given by u =∑n

i=1 hi ⊗ ei where hi ∈ H, and

‖u‖2 =

〈
n∑
i=1

hi ⊗ ei|
n∑
j=1

hj ⊗ ej

〉
=

n∑
i,j=1

〈hi|hj〉 〈ei|ej〉 =

n∑
i=1

‖hi‖2 = ‖(h1, ..., hn)‖2.

In other words, we have the Hilbert space isomorphism

H⊗ Cn ' H⊕ · · · ⊕ H︸ ︷︷ ︸
n times

= H(n)
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via the natural identification
∑n

i=1(hi ⊗ ei) '

h1...
hn

.

The next question which we want to address is:

II. What is a natural identification of a linear map in B(H⊗ Cn)?

Given Aij ∈ B(H) for 1 ≤ i, j ≤ n, we can consider A = (Aij) ∈Mn(B(H))
as an operator defined by

A

h1...
hn

 =


∑n

j=1A1jhj
...∑n

j=1Anjhj

 ∈ H ⊕ · · · ⊕ H︸ ︷︷ ︸
n times

.

It is not hard to see that every such map is bounded. Therefore, we have
Mn(B(H)) ↪→ B(H ⊗ Cn) in a natural way. In fact, every linear map on
H⊗Cn has such a matrix representation. The proof is “grubby” but here is

the idea: If A : H⊕· · ·⊕H → H⊕· · ·⊕H is linear, then A

h1...
hn

 =

k1...
kn

.

The map

h1...
hn

 7→ k1 is linear. Similarly, mapping the column vector to k2

is linear, and so on and so forth. The map


h1
0
...
0

 7→ k1 is linear, so there

is A11 : H → H enacting this transformation. If we continue to do this for
every hi and kj , then we get linear maps Aij : H → H and one can check
that A = (Aij).
Hence, we have a natural identification B(H ⊗ Cn) ' Mn(B(H)) via A '
(Aij), thereby allowing us to identify any linear operator A ∈ B(H⊗Cn) by
an n× n block matrix (Aij) ∈Mn(B(H)) whose entries are given by linear
maps.

This means, in particular, that when we write down a matrix of operators,
then (Ai,j) has a well-defined norm, namely, its norm as an operator on H(n)

and we can say if it defines a positive operator or not. This is what is meant
by the natural matrix norm and matrix order on Mn(B(H)).

III. Matrix Representation of T ⊗R: Suppose that T : H −→ H and R :
Cn −→ Cn are linear, R ∈Mn(C), R = (rij), then T⊗R : H⊗Cn −→ H⊗Cn
has a natural representation as an n × n block matrix T ⊗ R ∈ Mn(L(H))
whose entries are given by linear maps.
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We know that (T ⊗R)(h⊗ y) = T (h)⊗R(y), therefore,

(T ⊗R)(h⊗ ej) = T (h)⊗R(ej) = T (h)⊗

(
n∑
i=1

rijei

)

=
n∑
i=1

rijT (h)⊗ ei '

r1jTh...
rnjTh

 = (rijT )


0
...
h
...
0

 ,

where h is in the j-th position and there are 0’s everywhere else in the
column vector. The Kronecker product of T and R, then, is the block
matrix in Mn(B(H)) given by (rijT ) (so, there are n blocks, each block is
of size equal to the dimension of H, and the (i, j)-block is rijT ). In other
words, the Kronecker product is equal to the tensor product of the linear
maps (with respect to the canonical basis for Cn).

A special case is when R = In then we have that

T ⊗ In =


T 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · T

 .

If T ∈Mk and R ∈Mn. Then T ⊗R has matrix representation given by

T ⊗R =

r11T · · · r1nT
...

. . .
...

rn1T · · · rnnT

, a block matrix with n blocks, each of size k.

Another way to view operator matrices is as sums of tensors. If we set

Ei,j = |ei〉 〈ej | ,

then

(Ai,j) =

k∑
i,j=1

Ai,j ⊗ Ei,j ∈ B(H)⊗Mk.

Given subspaces, V ⊆ B(H) and W ⊆ B(K) we can regard Mk(V ) ⊆
Mk(B(H)) and Mk(W ) ⊆Mk(B(K)). This means that these subspaces are
also endowed with a canonical matrix norm and matrix order, via these
inclusions.

Given a linear map Φ : V →W we get linear maps, Φ(k) : Mk(V )toMk(W )
via

Φ(k)((Ai,j)) = (Φ(Ai,j)).
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We say that Φ is k-positive if Φ(k) maps positive elements of Mk(V ) to
positive elements of Mk(W ). We say that Φ is completely positive if it is
k-positive for all k.

Similarly, each map Φ(k) has a norm, but it turns out that these can vary
with k. So we call Φ completely bounded provided that

‖Φ‖cb := sup{‖Φ(k)‖; k ∈ N} < +∞.
Here is one example. Let V = W = B(C2) and define Φ(X) = Xt, the

transpose. It is a linear map. It is easy to check that P ≥ 0 ⇐⇒ P t ≥ 0,
os it is a positive map. Also, ‖X‖ + ‖Xt‖ is easily chekced. So Φ is an
isometric map.

Now consider the “matrix of matrix units”,

Q =

(
E1,1 E1,2

E2,1 E2,2

)
∈M2(B(C2)) = B(C4).

Since Q = Q∗ and Q2 = 2Q we see that the spectrum of Q is {0, 2} and so
Q ≥ 0. But

Φ(2)(Q) =

(
E1,1 E2,1

E1,2 E2,2

)
:= R.

We have that det(R) = −1, so it has negative eigenvalues. Hence, R is not
positive and Φ is not 2-positive and so not completely positive.

Also, R2 = I and so ‖R‖ = 1 and Φ(2)(R) = Q which has norm 2. Thus,

‖Phi(2)‖ ≥ 2. In fact, ‖Φ‖cb = 2. So this example shows that in general
‖Phi‖ 6= ‖Φ‖cb.

If one considers the transpose map on Mn one can show that it has norm
one and cb-norm of n. Thus, the cb-norm of a map can be arbitrarily larger
than its norm. In fact, if we consider the transpose map on B(`2N) it is an
isometric map with infinite cb-norm.

6. Introduction to C*-algebras

Developments and proofs of many of the results stated in this section can
be found in [?, ?, ?]. Recall that A is an algebra if it is a vector space and
also has a product that satisfies:

• (AB)C = A(BC)
• (A+B)C = AC +BC,C(A+B) = CA+ CB,
• λ ∈ C, A,B ∈ A =⇒ λ(AB) = (λA)B = A(λB).

An algebra is called a Banach algebra if it has a norm, it is complete
in the norm, i.e., a Banach space, and the norm is submultiplicative:

‖AB‖ ≤ ‖A‖‖B‖.
An algebra is a *-algebra if it also has a map A→ A∗ satisfying

• (A∗)∗ = A,
• (A+B)∗ = A∗ +B∗,
• λ ∈ C, A ∈ A =⇒ (λA)∗ = λA∗,
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• (AB)∗ = B∗A∗.

These properties are reflecting the behaviour of the adjoint of Hilbert space
operators.

A *-algebra is a C*-algebra if the norm also satisfies

‖A∗‖ = ‖A‖ and ‖A‖2 = ‖A∗A‖.
We call A a unital C*-algebra if it also has a unit element, I. In the

case one can show that necessarily, I∗ = I and ‖I‖ = 1.
The axioms are set up so that any norm closed subalgebra A ⊆ B(H)

such that A ∈ A =⇒ A∗ ∈ A is a C*-algebra. We will call these concrete
C*-algebras.

One key theorem is that every abstract C*-algebra is “identical” to a con-
crete C*-algebra, where means *-isomorphic, a concept that we will define
shortly.

Here are some non-concrete C*-algebras. Let X be a compact Hausdorff
space and set

C(X) = {f : X → C| f is continuous },
and set

‖f‖ = sup{|f(x)| : x ∈ X},
which is finite since X is compact. Define a *-operation by

f∗(x) = f(x).

Then it is not hard to see that this is a C*-algebra.
Here are a few basic facts about C*algebras.
Cartesian Decomposition: Given A ∈ A we have that H = A+A∗

2 =

H∗ ∈ A and K = A−A∗

2i = K∗ ∈ A and A = H + iK.
Spectrum: Given a unital C*-algebra A and A ∈ A we set

σA(A) = {λ ∈ C| (λI −A) has no inverse in A}.
Then σA(A) is a non-empty compact set and we have

sup{|λ| : λ ∈ σA(A)} = lim
n
‖An‖1/n.

Spectral Permanence: If A is a C*-subalgebra of B with I ∈ A ⊆ B,
then for any X ∈ A, σA(X) = σB(X).

• if H = H∗, then σA(H) ⊆ R.
• If U∗U = UU∗ = I, then σA(U) ⊆ T.
• If P = P ∗, then P = A∗A for some A if and only if σA(P ) ⊆ [0,+∞).

This last property is used to define the positive elements of a C*-algebra.
Given two C*-algebras, A,B a map π : A → B is called a *-homomorphism

provided:

• π is linear,
• π(XY ) = π(X)π(Y ), i.e., is multiplicative,
• π(X∗) = π(X)∗.

We call π a *-isomorphism if in addition it is one-to-one and onto.
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Proposition 6.1. If π is a *-homomorphism, then ‖π(X)‖ ≤ ‖X‖ and the
range of π, R(π) is closed. Consequently, if π is a *-isomorphism, then π
is an isometry.

Corollary 6.2 (Uniqueness of Norm). Let A be a *-algebra and suppose
that ‖ · ‖1, ‖ · ‖2 are two norms, both of which make A into a C*-algebra.
Then ‖X‖1 = ‖X‖2, ∀X ∈ A.

The following theorem characterizes all abelian, i.e., X,Y ∈ A =⇒
XY = Y X, C*-algebras.

Theorem 6.3 (Gelfand-Naimark). Each unital abelian C*-algebra is *-
isomorphic to C(X) for some compact, Hausdorff space X.

6.1. States and the GNS Construction. By a state on a unital C*-
algebra A we mean a linear functional, s : A → C such that s(I) = 1 and
s(X∗X) ≥ 0, ∀X ∈ A.

The following alternative characterization of states is often useful.

Proposition 6.4. Let s : A → C be a linear functional with s(I) = 1. Then
s is a state if and only if ‖s‖ = 1.

Theorem 6.5 (The GNS Construction). Let A be a unital C*-algebra and
let s : A → C be a state. Then there exists a Hilbert space H, a unit vector
φ ∈ H and a unital *-homomorphism, π : A → B(H) such that

s(A) = 〈φ|π(A)φ〉, ∀A ∈ A.

We outline the key ideas of the proof. First define a map

B : A×A → C by B(X,Y ) = s(X∗Y ).

It is easy to check that this map is sesquilinear and positive semidefinite.
Thus, if we let

N = {X ∈ A|B(X,X) = 0},
then N is a subspace and we have a well-defined inner product on A/N
defined by

〈X +N|Y +N〉 = s(X∗Y ).

We will get our HIlbert space H by completing this inner product space.
Next note that for each A ∈ A we have a linear map

LA : A → A, LA(X) = AX,

given by left multiplication by the element A.
We claim that LA(N ) ⊆ N . To see this we first show that

0 ≤ X∗A∗AX ≤ ‖A‖2X∗X.
Hence, if X ∈ N then

0 ≤ s(X∗A∗AX) ≤ ‖A‖2s(X∗X) = 0.

This implies that s((AX)∗(AX)) = s(X∗A∗AX) = 0 and so AX ∈ N and
the claim is done.
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General algebra then tells us that we have a well-defined quotient map,

L̂A : A/N → A/N , L̂A(X +N ) = AX +N .
The above inequality also tells us that this map is bounded on the inner

product space A/N , since,

‖L̂A(X+N )‖2 = 〈AX+N|AX+N〉 = s(X∗A∗AX) ≤ ‖A‖2s(X∗X) = ‖A‖2‖X+N‖2.
By HW1, we can extend this linear map by continuity to a bounded linear

map, L̃A : H → H with ‖L̃A‖ = ‖L̂A‖.
Thus, we have a map, π : A → B(H), π(A) = L̃A.
Some checking shows that the map π is a *-homomorphism.
To define the vector, we set φ = I +N . Then ‖φ‖2 = 〈φ|φ〉 = s(I∗I) =

s(I) = 1.
Finally,

〈φ|π(A)φ〉 = 〈I +N|A+N〉 = s(A).

This completes the outline of the proof.
This construction also leads to the following important theorem.

Theorem 6.6 (GNS Representation Theorem). Let A be a unital C*-
algebra. Then there exists a Hilbert space and an isometric *-homomorphism,
π : A → B(H). Hence, A and the concrete C*-subalgebra B = π(A) are *-
isomorphic.

The idea of the proof is to for each state get a *-homomorphism and
then take a direct sum of these *-homomorphisms and prove that there are
enough states that this direct sum must be isometric.

6.2. GNS and State Purification. Suppose that we are given a density
operator ρ ∈ C1(H). This defines a linear functional,

sρ : B(H)→ C via sρ(X) = Tr(Xρ).

Note that sρ(I) = Tr(ρ) = 1 and for any positive X∗X,

sρ(X
∗Xρ) = Tr(X∗Xρ) = Tr(XρX∗) ≥ 0,

since XρX∗ ≥ 0. Thus, sρ is a state and by GNS has a representation,

sρ(X) = 〈φ|π(X)φ〉.

In the case that ρ =
∑N

i=1 λi |φi〉 〈φi| we can make this very explicit. Set

φ = (
√
λ1φ1, . . . ,

√
λNφN ) ∈ H(N), which is a unit vector, and let

π(X) = Diag(X) ∈MN (B(H)) = B(H(N)),

where by Diag(X) we mean the diagonal operator matrix with X for the
diagonal entry.

It is easily seen that π : B(H) → MN (B(H)) is a *-homomorphism and
that sρ(X) = 〈φ|π(X)φ〉.

Thus, we have a very concrete GNS-like, in this case. This construction is
generally referred to as state purification, as in the phrase, “by purifying
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the state ensemble, we may regard it as a pure state on a larger HIlbert
space”. In this sense, the GNS representation shows that every state can be
“purified”.

Later we will talk about what it means for a state on a C*-algebra to
be ”pure”. GNS does not say that every state is pure, just that it can be
represented as a vector state, and we will see that vector states are pure
states on B(H).

A natural question is whether or not this concrete construction is the
GNS, in an appropriate sense. The following result tells us how to recognize
the GNS representation of a state.

Proposition 6.7. Let A be a unital C*-algbra, let s : A → C be a state and
let πs : A → B(Hs), φs ∈ Hs be the GNS representation of the state. Then

πs(A) := {πs(A)φs : A ∈ A}

is a dense subset of Hs. Moreover, let π : A → B(H) be a unital *-
homomorphims and let φ ∈ H be a unit vector such that 〈φ|π(A)φ〉 = s(A)
and such that π(A)φ is dense in H, then there is a unitary U : Hs → H
with Uφs = φ and π(A) = Uπs(A)U∗.

Given a *-homomorphism π a vector φ is called cyclic if π(A)φ is dense
in H. Thus, the proposition says that, up to a unitary equivalence, any
(π, φ) that gives rise to the state via the formula, s(A) = 〈φ|π(A)φ〉 with φ
cyclic, is the GNS.

In the case that ρ =
∑N

i=1 λi |φi〉 〈φi| considered above, with the repre-
sentation π(A) = Diag(A), the vector φ = (

√
λ1φ1, ...,

√
λNφN ) might not

be cyclic, so this might not be the GNS of the state on A = B(H). For
example, if the vectors φ1, ..., φN are not linearly independent, then φ won’t
be cyclic.

However, if we use the spectral decomposition of ρ, then the vectors
φ1, ..., φN will be orthonormal and in this case one can see that the vector φ is
cyclic. This is because when the vectors are o.n., then given any set of vectors
h1, ..., hN we can always find an operator A such that hi = A(

√
λiφi), ∀i.

6.3. The C*-algebra Mn(A). Given a unital C*-algebra A, we want to
discuss how to make Mn(A) into a C*-algebra. First note that it is always
a vector space with operations, scalar multiplication λ(AI,j) = (λAi,j) and
addition (Ai,j) + (Bi,j) = (Ai,j + Bi,j). There is a natural way to make it
an algebra too via the formula for matrix multiplication, (Ai,j) · (Bi,j) =
(
∑n

k=1Ai,kBk,j). If we set (Ai,j)
∗ = (A∗j,i) then we have a *-algebra. all

that we are lacking to make it into a C*-algebra is a norm.
To find a norm, we use the GNS theorem. Take any π : A → B(H) an

isometric *-homomorphism, so that ‖A‖ = ‖π(A)‖. We now define

‖(Ai,j)‖π := ‖(π(Ai,j)‖B(H(n)).

It is easily checked that this norm makes Mn(A) into a C*-algebra.
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However, we have that the norm on a C*-algebra is unique, so any other
way that we tried to create a norm, as long as it was a C*-norm, would
necessarily be this norm.

Now that we know that every Mn(A) is itself a C*-algebra, it makes
sense to talk about completely positive maps between any two C*-algebras.
Namely, if Φ : A → B is a linear map, then we say that it is n-positive if
whenever (Ai,j) is a positive element of the C*-algebra Mn(A) then (Φ(Ai,j))
is a positive element of the C*-algebra Mn(B). As before a map is com-
pletely positive provided that it is n-positive for every n.

6.4. Stinespring’s dilation Theorem.

Theorem 6.8 (Stinespring(1955)). Let A be a unital C*-algebra, H a Hilbert
space, and Φ : A → B(H) a completely positive map. Then there is a Hilbert
space K, a unital *-homomorphism π : A → B(K) and V ∈ B(H,K) such
that

Φ(A) = V ∗π(A)V.

Moreover, every map of this form is completely positive.

For a complete proof see either [?] or [?].
We sketch the key ideas of the proof. First we take the vector space A⊗H

and define a sesquilinear form by

B(
∑
i

Xi ⊗ hi|
∑
j

Yj ⊗ kj) =
∑
i,j

〈hi|Φ(X∗i Yj)kj .

One checks that this is positive semidefinite. To see, note that

(∗) := B(

N∑
i=1

Ai ⊗ hi|
N∑
j=1

Aj ⊗ hj) = 〈h|(Φ(A∗iAj)h〉,

where h = (h1, ..., hn) ∈ H(N) and (Φ(A∗iAj)) = Φ(N)((A∗iAj)) ≥ 0, since
Φ is N-positive and since (A∗iAj) = X∗X ≥ 0, with X the matrix that has
A1, ..., AN for its first row and all other rows equal to 0. This shows that
(∗) ≥ 0 and so B is positive semidefinite.

Let N be the null space of B. Our Hilbert space K will be the completion
of the inner product space (A⊗H)/N .

Now as in GNS for each A ∈ A we define a linear map LA : A⊗H → A⊗H
via LA(

∑
iXi⊗hi) =

∑
i(AXi)⊗hi and check that LA(N ) ⊆ N . This allows

us to define a linear map on the quotient, L̂A : (A⊗H)/N → (A⊗H)/N
which we show is bounded and so extends to an operator, π(A) : K → K.
This defines our *-homomorphism.

To define V : H → K we set V (h) = IA⊗h+N and check that it is linear
and bounded.

Finally, to see that this gives us what we want we compute,

〈h|V ∗π(A)V k〉H = 〈V h|π(A)V k〉K = 〈IA ⊗ h+N|A⊗ k +N〉K
= B(IA ⊗ h|A⊗ k) = 〈h|Φ(A)k〉H.
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Since this is true for all pairs of vectors, we have that V ∗π(A)V = Φ(A).

6.5. More on Tensor Products. Given A = (ai,j) : Cn → Cn and B =

(bk,l) : Cd → Cd we have a linear map A ⊗ B : Cn ⊗ Cd → Cn ⊗ Cd. We
would like to look at matrix representations of htis map. Recall that to
write down a matrix for a linear map one wants an ordered basis for the
space. If {ei : 1 ≤ i ≤ n} and {fk : 1 ≤ k ≤ d} are the canonical onb’s, then
we know that {ei ⊗ fk : 1 ≤ i ≤ n, 1 ≤ k ≤ d} is an orthonormal basis for
Cn ⊗ Cd.

There are two natural ways to order this basis, one is as

e1 ⊗ f1, e2 ⊗ f1, ..., en ⊗ f1, e1 ⊗ f2, ..., en ⊗ f2, ...., en ⊗ fd,
when we group these into blocks of n, this corresponds to the decomposition

Cn ⊗ Cd ∼ (Cn ⊗ f1)⊕ · · · ⊕ (Cn ⊗ fd) ∼ (Cn)(d).

With respect to this ordering,

A⊗B ∼ (bk,lA) ∈Md(Mn).

Alternatively, we may order the basis as,

e1 ⊗ f1, e1 ⊗ f2, ..., e1 ⊗ fd, e2 ⊗ f1, ..., e2 ⊗ fd, ..., en ⊗ fd,
when we group these into blocks of size d this corresponds to the decompo-
sition

Cn ⊗ Cd ∼ (e1 ⊗ Cd)⊕ · · · (en ⊗ Cd) ∼ (Cd)(n).
With repsect to this ordering,

A⊗B ∼ (ai,jB) ∈Mn(Md).

In particular these two (nd) × (nd) matrices are unitarily equivalent by
the permutation unitary that takes one ordering to the other.

When B = Id this gives us two matrix representations,

A⊗ Id ∼ Diag(A) ∼ (ai,jId).

6.6. The Finite Dimensional Version of Stinespring. We want to look
at what Stinespring’s theorem says in the case that A = Md and H = Cr,
so that we have a CP map Φ : Md → B(Cr) = Mr.

In this case the Hilbert space K is obtained by completing (Md⊗Cr)/N .
But this space is finite dimensional and every finite dimensional inner prod-
uct space is already complete, so that K = (Md ⊗Cr)/N and in particular,

dim(K) ≤ d2r.
Now let {Ei,j = |ei〉 〈ej | : 1 ≤ i, j ≤ d} be the canonical basis for Md and

let the Stinespring representation, be Φ(X) = V ∗π(X)V with V : Cr → K
and π : Md → B(K). Because π is a unital *-homomorphism, it follows that
π(Ei,i) is the orthogonal projection onto some subspace Mi of K. Because

IK = π(Id) =
∑
i

π(Ei,i),
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we see that

K =M1 ⊕M2 ⊕ · · ·Md.

Moreover, because E∗i,jEj,j = Ej,j and Ei,jE
∗
i,j = Ei,i we see that π(Ei,j

defines an isometry from Mj onto Mi. This guarantees that dim(Mi) =
dim(Mj) and if that if we use the maps π(Ei,j) to identify these as all the
same space M, then

K =M(d),

and the maps π(Ei,j) just act as permutations of the j-th copy ofM to the
i-th copy.

We also have that, d · dim(M) = dim(K) ≤ d2r, so that

m := dim(M) ≤ dr.

With these identifications, for X = (xi,j) =
∑d

i,j=1 xi,jEi,j , we have that

π(X) = (xi,jIM).

But up to a permutation, we may also regard

K ∼ (Cd)(m),

and now

π(X) = Diag(X),

the block diagonal matrix of m copies of X, and now V : Cr → K = (Cd)(m)

has the form

V h = (V1h, . . . , Vmh)t,

for maps Vi : Cr → Cd, i.e., d× r matrices.
With these identifications,

Φ(X) = V ∗Diag(X)V =
m∑
i=1

V ∗i XVi.

This last form of Φ is often called a Choi-Kraus representation of Φ.
Note that our proof shows that the Choi-Kraus representation can always

be taken to have fewer than dr terms.
A few things to note. If Φ is UCP, then

Ir = Φ(Id) =

m∑
i=1

V ∗i Vi.

On the other hand if Φ is CPTP, then

Tr(X) = Tr(Φ(X)) = Tr(

m∑
i=1

V ∗i XVi) = Tr((

m∑
i=1

ViV
∗
i )X),∀X,

from which it follows that
m∑
i=1

ViV
∗
i = Id.
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Thus, we see that every CPTP Φ : B(Cd) = C1(Cd) → B(Cr) = C1(Cr)
corresponds to the quantum channel induced by an m outcome measurement
system,

{V ∗1 , ..., V ∗m},
between the initial space Cd and the final space Cr.

Perhaps the key takeaway of this subsection is the following.

Corollary 6.9. Every CPTP map Φ : Md → Mr is the quantum channel
induced by an m-outcome measurement system, {V ∗1 , ..., V ∗m : Cd → Cr.

Thus, in finite dimensions the set of CPTP maps and the set of quantum
channels induced by measurement systems coincide.

6.7. K Outcome POVM’s. Recall that a K outcome measurement system
on an input state space Hi is given by an output Hilbert space Ho and
operators Tk : Hi → Ho such that if we are in state ψ then the probability
of observing outcome k is

pk = 〈Tkψ|Tkψ〉 = 〈ψ|T ∗kTkψ〉.
The operators Pk = T ∗kTk are positive, sum to one and

pk = 〈ψ|Pkψ〉.
Thus, if we are only interested in the probabilities of outcomes, all that
matters are the positive operators Pk. Also note that

∑K
k=1 Pk = IHi .

A set of operators P1, ..., PK ∈ B(H) is called a K outcome positive
operator-valued measure or K-POVM provided that they are positive
and sum to the identity. A K-POVM is called a K outcome projection-
valued measure or K-PVM when each Pk is a projection, i.e., Pk = P 2

k =
P ∗k ,∀k.

Given a K-POVM, define Φ : `∞K → B(H) by

Φ(
K∑
k=1

akδk) =
K∑
k=1

akPk.

It is not hard to see that this map is unital and positive. Hence, by
Stinespring’s theorem it is UCP. Conversely, given any unital positive map
Φ : `∞K → B(H) if we set Pk = Φ(δk) then this defines a K-POVM.

Thus, studying K-POVM’s is the same as studying UCP maps on `∞K .
By Stinespring’s dilation theorem, given a K-POVM on H, there is an-

other Hilbert spaceK, an isometry V : H → K and a unital *-homomorphism,
π : `∞K → B(K) such that

Pk = V ∗π(δk)V, 1 ≤ k ≤ K.
Note that if we set Ek = π(δk) then {E1, ..., EK} is a K-PVM on K.

Thus, each K-POVM dilates to a K-PVM and this process is often called
a purification of the K-POVM.

In this simple case it is possible to carry out this process directly. If we set
K = H(K), let Ek denote the projection onto the k-th copy of H, and define
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V : H → H(K) by V h = (P
1/2
1 h, ..., P

1/2
K h), then it is not hard to see that

Pk = V ∗EkV, 1 ≤ k ≤ K. Thus, we have obtained a Stinespring-like dilation.
However, this dilation will often not satisfy the minimality property needed
to be equivalent to the Stinespring dilation.

7. C*-algebras of Groups

These are used in the study of unitary representations and arise quite a
bit in QI. We will only look at the case of discrete groups, i.e., we will not
worry about groups with topologies.

Given a group G we will always let e denote its identity element. By
a unitary representation of G on the Hilbert space H, we mean a map
π : G → B(H) such that π is a unital homomorphism, i.e., π(e) = IH,
π(gh) = π(g)π(h), into the group of unitary operators onH. Thus, π(g−1) =
π(g)−1 = π(G)∗. Sometimes we set π(g) = Ug in which case UgUh = Ugh.

When we have a unitary representation, then it makes sense to take lin-
ear combinations, such as

√
2π(g) + 3iπ(h). But in the group this would

have no meaning. The *-algebra of the group is an object that allows such
expressions.

The *-algebra of G, denoted C(G), is the vector space with a basis denoted
{ug : g ∈ G}, so typical elements look like a =

∑
i αiugi and b =

∑
j βjugj

where both sums are over finitely many group elements and αi, βj ∈ C. The
product is given by

a · b =
∑
i,j

αiβjugigj

and
a∗ =

∑
i

αiug−1
i
.

Now it should be clear that every unitary representation π of G onH induces
a unital *-homomorphism, π̃ : C(G)→ B(H) via

π̃(
∑
i

αiugi) =
∑
i

αiπ(gi).

Conversely, given a unital *-homomorphism, π̃ : C(G) → B(H) we get a
unitary representation by setting π(g) = π̃(ug).

Often to avoid the additional subscripts, it is better to write a typical
element as

∑
g αgug with the understanding that only finitely many of the

αg’s are non-zero.
There is a second, equivalent, description of C(G) that is often used.

Namely, C(G) can also be defined as the finitely supported complex val-
ued functions on G. The correspondence is that we think of the finite sum∑

g αgug as the function f : G → C with f(g) = αg. Thus, in this descrip-
tion, if we define δg : G→ C to be the function given by

δg(h) =

{
1, h = g

0, h 6= g
,
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then in the identification of the two descriptions ug ∼ δg.
The product looks quite different in this representation. That is because

if we think of f1 ∼
∑

g αgug = a and f2 ∼
∑

h βhuh = b, then we need a
formula for the product at a typical point k. To see this note that(∑

g

αgug
)(∑

h

βhuh
)

=
∑
g,h

αgβhugh =

∑
k

( ∑
gh=k

αgβh
)
uk =

∑
k

( ∑
h=g−1k

αgβh
)
uk =

∑
k

(∑
g

αgβg−1k

)
uk =

∑
k

(∑
g

f1(g)f2(g
−1k)

)
uk.

Thus, the formula for the product of two functions is

(f1 ? f2)(k) =
∑
g

f1(g)f2(g
−1k),

which is called the convolution product.
So the summary is that the convolution product is just the product that

we have defined above when we regard finite sums as finitely supported
functions. The convolution product is preferred by many since it is the one
that generalizes most easily to the case of continuous groups and measures.
But for discrete groups it is perhaps less intuitive.

Note that the *-operation from the functions viewpoint is

f∗(g) = f(g−1).

Finally, to form the C*-algebra of a group, we first need to define a norm
on C(G). We do this by setting

‖
∑
g

αgug‖ = sup{‖
∑
g

αgπ(g)‖|π a unitary representation }.

Note that the supremum is finite since the sums are finite. In fact,

‖
∑
g

αgug‖ ≤
∑
g

|αg|,

since the norm of every unitary is 1. It is easily checked that with this norm
C(G) satisfies all the axioms needed to be a C*-algebra, except that it may
not be complete as a normed space.

So we define C∗(G) to be the completion of C(G) in this norm. Then it
is readily checked that we obtaina C*-algebra in this fashion.

The key property of this C*-algebra is that every time we have a unitary
representation π : G→ B(H), then it induces a unital *-homomorphism, π̃ :
C(G)→ B(H), which then extends by continuity to a unital *-homomorphism,
π̃ : C∗(G) → B(H). Conversely, every unital *-homomorphism π̃ of C∗(G)
defines a unitary representation of G by setting π(g) = π̃(ug).
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Thus we have one-to-one correspondences between:

• unitary representations of G,
• unital *-homomorphisms of C(G),
• unital *-homomorphisms of C∗(G).

We now look at a few examples.

Example 7.1 (Z,+). This group is also known as the infinite cyclic group.
It is a little annoying as a first example, because we have written groups
multiplicatively and this example is additive. So that e = 0 and if we let
g = 1 then gn = 1+· · ·+1 = n. Note that to define a unitary representation,
all we need to do is select any unitary π(1) = U ∈ B(H) and set π(n) = Un

with the understanding that U0 = IH. Thus,

‖
∑
n

αnun‖ = sup ‖
∑
n

αnU
n‖,

where the supremum is over all unitaries on all Hilbert spaces.
If we first consider the case that H is one-dimensional, then a unitary is

just a complex number on the unit circle T. If we set π(1) = λ ∈ T, then
π̃(
∑

n αnun) =
∑

n αnλ
n. If we consider the Laurent polynomial, p(z) =∑

n αnz
n which we regard as a continuous function on T, i.e., as an element

of C(T), then π̃(
∑

n αnun) = p(λ). Thus, we see that

‖
∑
n

αnun‖ ≥ sup
λ∈T
|p(λ)| = ‖p‖∞,

where this last quantity is the norm of p(z) ∈ C(T).
On the other hand, given any unitary U we know that its spectrum σ(U)

is a subset of T. Thus, by the spectral theorem we know that

‖
∑
n

αnU
n‖ = ‖p(U)‖ = sup{|p(λ)|;λ ∈ σ(U)} ≤ sup{|p(λ)| : λ ∈ T}.

These two inequalities show that

‖
∑
n

αnun‖C(Z) = ‖
∑
n

αnz
n‖C(T).

From this it follows that C∗(Z) and C(T) are *-isomorphic via the map
that sends un → zn.

Example 7.2 (Zn,+). We now look at the cyclic group of order n. The
analysis is similar to the infinite cyclic case. Every unitary representation,
π : Zn → B(H) is determined by the image of the generator, U = π(1),

except now since n = 0, the unitary must satisfy Un = IH. We set ω = e2πi/n

and let Xn = {ωj : 0 ≤ j ≤ n − 1}. The fact that Un = IH means that
σ(U) ⊆ Xn.

Every element of C(Zn) can be written as
∑n−1

j=0 αjuj and since every

finite dimensional normed space is complete, we have that C∗(Zn) = C(Zn).
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A similar analysis to above shows that

‖
n−1∑
j=0

αjuj‖C∗(Zn) = sup{|
n−1∑
j=0

αjλ
j | : λ ∈ Xn} = ‖

n−1∑
j=0

αjz
j‖C(Xn).

Thus, C∗(Zn) and C(Xn) are *-isomorphic.
There is a bit more that can be said in this case, since Xn is a finite

discrete set. If we let δj : Xn → C be defined by

δj(ω
i) =

{
1, i = j

0, i 6= j
,

then it is easy to see that δ2j = δj = δj , so that these elements are projections

in C(Xn). Also, C(Xn) = span{δj : 0 ≤ j ≤ n− 1}.
On the other hand give a unitary U with Un = IH, we will have projec-

tions Ej onto the eigenspace for the eigenvalue ωj and ”diagonalizing” U we
may write it as

U =

n−1∑
j=0

ωjEj .

Using some algebra we can see that

Ej = 1/n
n−1∑
k=0

(
ωjU

)k
.

This suggests that in the group algebra, if we set

ej = 1/n
n−1∑
k=0

(ω−j)kuk,

then these elements should satisfy:

ej = e2j = e∗j , eiej = 0, i 6= j, 1 =

n−1∑
j=0

ej ,

and that in the isomorphism between C(Zn) and C(Xn) the image of ej is
δj . We leave it to the reader to verify these facts.

Thus, the group algebra C(Zn) ' C(Xn) can be thought of as the algebra
generated by an element u = u1, satisfying un = 1 or as generated by n
orthogonal projections that sum to the identity.

7.1. Free Products of Groups. One other concept that we shall use is
the concept of the free product of groups. Given two groups G and H, their
free product, denoted G ? H is the unique group, containing G and H as
subgroups, with the property that whenever K is another group and we are
given group homomorphisms, π : G → K and ρ : H → K, then there is a
unique group homomorphism, γ : G ? H → K such that γ(g) = π(g) and
γ(h) = ρ(h) for all g ∈ G, h ∈ H.
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Operationally, G ? H can be viewed as the set of words in G and H,
where a word w is an alternating of elements of G and H. The identity
elements eG and eH are identified as the same element in G ? H and this
element is the identity of G ? H. Thus,

w1 = g1h1g2, w2 = g−12 h2g4h3, w3 = h4g5h5,

are all examples of words. The operation of multiplication of words is a pro-
cess called concatenation. Briefly, this operation just strings the elements
of two words together, multiplying them whenever possible. Thus,

w1w3 = g1h1g2h4g5h5,

while,

w1w2 = g1h1(g2g
−1
2 )h2g4h3 = g1h1eGh2g4h3 = g1(h1h2)g4h3.

It is easily checked that the inverse of a word is just the string of inverses
written in the reverse order, so that

w−11 = g−12 h−11 g−11 .

Note that G?H and H ?G are the same group. The homomorphism γ is
usually denoted π ? ρ so we have that, we also have π ? ρ = ρ ? π.

Finally, given unitary representations π : G → B(H) and ρ : H → B(H)
we obtain a unitary representation π ? ρ : G ? H → B(H).

This operation extends so that one can form the free product of any
collection of groups. Some of these have special notations. The free product
of n copies of (Z,+) is denoted Fn and is called the free group on n
generators. If we write (Z,+) multiplicatively, so that it is just powers of
some generator g and we write a second copy as powers of some generator
h, then typical elements of F2 look like words in powers of g and h.

Since all we need to define a unitary representation of Z on H is a choice
of a unitary U ∈ B(H) with π(1) = U , every time we choose two unitaries
U, V ∈ B(H) we obtain a representation of F2 on H. The representation
sends words in the generators g, h to the corresponding word in U and V .
Similarly, every choice of n unitaries in B(H) defines a representation of Fn
on H.

The free product of n copies of (Zn,+) is denoted Fn,k. Every choice of n

unitaries, U1, ..., Un ∈ B(H) with Uki = IH defines a unitary representation
of Fn,k.

The group algebra C(Fn,k) can be thought of as being generated by n

unitaries, u1, ..., un each satisfying ukx = 1, with no relations between distinct

unitaries. Or since we may write each ux =
∑k−1

j=0 ω
jex,j in terms of its

spectral projections, where ω = e2πi/k, it is also generated by families of
projections {ex,j : 1 ≤ x ≤ n, 0 ≤ j ≤ k − 1} with ex,iex,j = 0,∀i 6= j and∑k−1

j=0 ex,j = 1, ∀x.
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7.2. Conditional Joint Bivariate Densities. Suppose that we have two
separate labs A and B in some joint quantum state. If A can perform n1
different measurements, each with k1 outcomes and B can perform n2 dif-
ferent measurements each with k2 outcomes then there is a joint conditional
probability density

p(i, j|x, y),

which represents the probability that if A performs measurment x, and B
performs measurement y, then they see outcomes i and j respectively.

Bell showed that in the case n1 = n2 = k1 = k2 = 2 that a certain
mathematical model for describing these densities, gave a strictly larger set
of densities than was allowed by Einstein’s theory of ”hidden local variables”.
Consequently, by producing quantum experiments that exhibited densities
in this larger set but not in the smaller set, the first proofs that entanglement
is a real phenomenon were given. Later Tsirelson realized that there was
more than one mathematical model for these densities and it is only very
recently that it has been shown that these various mathematical models to
not all give rise to the same sets of densities. The first difference was shown
by our own W. Slofstra.

We will now describe these differing mathematical models for representing
these various sets of densities.

7.3. Classical or Local Densities. In abstract probability theory we are
given a set Ω a collection E of subsets of Ω called events, and a map
P : E → [0, 1] that assigns a probability to each event. For each measurement
x, outcome i is an event Ax,i with

∪k1i=1Ax,i = Ω and Ax,i ∩Ax,j = ∅, i 6= j.

Similarly, for each measurment y, there would be events By,j such that

∪k2j=1By,j = Ω and By,i ∩By,j = ∅, i 6= j.

In this case the joint density is given by

p(i, j|x, y) = P (Ax,i ∩By,j).

The set of all possible (p(i, j|x, y)) that one can obtain this way is a subset
of Rn1n2k1k2 denoted by

Cloc(n1, n2, k1, k2),

or

LOC(n1, n2, k1k2),

is known as the set of local conditional densities or local correlations.
If Einstein’s ”local hidden variable theory” had been correct, these would
be the only densities that nature could produce.
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7.4. The Basic Model for Quantum Conditional Densities. In the
basic model, A is assumed to have a finite dimensional state space, HA
and POVM’s {Px,i : 1 ≤ x ≤ n1, 1 ≤ i ≤ k1}, while B has another finite
dimensional state space HB and POVM’s {Qy,j : 1 ≤ y ≤ n2, 1 ≤ j ≤ k2}.
Then the operator Px,i⊗Qy,j on HA⊗HB is the measurement operator for
outcome (i, j) when the pair of measurements (x, y) is performed. Thus, if
the labs are in a joint pure quantum state ψ ∈ HA ⊗HB then we obtain

p(i, j|x, y) = 〈ψ|(Px,i ⊗Qy,j)ψ〉.

The set of all possible densities that one can obtain this way by varying,
the POVM’s finite dimensional Hilbert spaces and state vectors, is denoted
by

Cq(n1, n2, k1, k2),

or

Q(n1, n2, k1, k2), or Q⊗(n1, n2, k1, k2)

and is generally referred to as the set of quantum correlations or quan-
tum conditional densities.

Since every PVM is a POVM, if we required that Px,a and Qy,b are both
PVM’s in the above definition we would get a potentially smaller set of joint
densities. On the other hand, by the last section’s dilation theorem, the
family of POVM’s Px,a can be written as Px,i = V ∗Ex,iV , where Ex,i is a
family of PVM’s on a space KA and V : HA → KA is an isometry. Similarly,
if we write Qy,j = W ∗Fy,jW for some family of PVM’s Fy,j on a space KB
and isometry W : HB → KB and set γ = (V ⊗W )ψ ∈ KA ⊗ KB, then we
have that

p(i, j|x, y) = 〈ψ|(Px,i ⊗Qy,j)ψ〉 = 〈γ|(Ex,i ⊗ Fy,j)γ〉.

Thus, we see that if in our definition of elements of Cq(n1, n2, k1, k2) we had
replaced POVM’s by PVM’s we would have obtained the same set.

For this reason, you will often see either of the definitions used in the
literature, but it is important to know that the set that is being defined is
independent of this ambiguity.

In the case that ψ = ψA ⊗ ψB, one has that

p(i, j|x, y) = 〈ψA|Px,iψA〉〈ψB|Qy,jψB〉,

and it is possible to show that this density is in Cloc.

7.5. Quantum Spatial Correlations. If we keep all the definitions the
same as in the last subsection, but remove the requirement that the Hilbert
spaces HA and HB be finite dimensional we obtain a larger set denoted

Cqs(n1, n2, k1, k2).

Again, using the same reasoning as above, we see that this set is the same
if we use PVM’s in place of POVM’s in the definition.



38 V. I. PAULSEN

7.6. Quantum Commuting Correlations. In this model, instead of each
lab having its own private state space, it is assume that there is a universal
state space H that all of the measurement operators act on. The assumption
that the labs are ”separated” is interpreted as saying that the outcome
doesn’t depend on the order that the measurements are applied, in other
words that

Px,iQy,j = Qy,jPx,i, ∀x, y, i, j.

If the combined system is in state ψ ∈ H then the conditional probability
densities are given by

p(i, j|x, y) = 〈ψ|Px,iQy,jψ〉.

The set of all such densities is denoted

Cqc(n1, n2, k1, k2).

It is not at all clear in this case, if the set Cqc remains the same if we
replace POVM’s by PVM’s. This is because there is only one Hilbert space
involved and if we tried to apply our above ideas, we would get potentially
different spaces when we dilated the Px,i’s and the Qy,j ’s. However, using
POVM’s or PVM’s both yield the same set Cqc.

This fact was first proved in [?] and a direct statement and proof of this
fact can be found in [?] and [?]. All three proofs use C*-algebras of free
groups and the theory of tensor products of these algebras. We outline the
ideas here.

By Corollary 11.12, the set of n1 PVM’s {Px,i : 1 ≤ x ≤ n1, 0 ≤ i ≤ k1−1}
on B(H) each with k1 outcomes, induces a UCP map,

Φ : C∗(Fn1,k1)→ B(H),

with Φ(ex,i) = Px,i. Similarly, {Qy,j : 1 ≤ y ≤ n2, 0 ≤ j ≤ k2 − 1} induces
another UCP map

Ψ : C∗(Fn2,k2)→ B(H).

Because the range of Φ commutes with the range of Ψ, this pair of maps
induces a UCP, Φ�Ψ map on the maximal C*-tensor product of these
two algebras, C∗(Fn1,k1)⊗max C∗(Fn2,k2) defined on generators by

Φ�Ψ(ex,i ⊗ ey,j) = Φ(ex,i)Ψ(ey,j).

Applying the Stinespring dilation to this map one obtains the desired com-
muting families of commuting PVM’s.

The key takeaway at this point is that to fully understand these commut-
ing densities, one needs the theory of group C*-algebras and some results
from the theory of tensor products of C*-algebras. The tensor theory is
covered in the later chapter where we examine C*-algebras in greater depth.
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7.7. Quantum Approximate Correlations. These are the set of densi-
ties that can be approximated by densities in Cq, in other words the closure

of the subset Cq(n1, n2, k1, k2) of Rn1n2k1k2 in the usual Euclidean topology.
We will denote this set by

Cqa(n1, n2, k1, k2).

One could ask about the closure of Cqs(n1, n2, k1, k2) but it turns out that
it has the same closure as Cq. Again, this set is the same if we use POVM’s
or PVM’s in its definition.

Originally Tsirelson believed that

Cq(n1, n2, k1, k2) = Cqs(n1, n2, k1, k2) = Cqa(n1, n2, k1, k2) = Cqc(n1, n2, k1, k2),

and so whether or not various pairs are equal became known as the Tsirelson
conjectures. These sets are all equal in the case that n1 = n2 = k1 = k2.

Interest in these problems ramped up when [?] and [?], proved that the
equality of Cqa and Cqc for all n’s and k’s is equivalent to a famous problem in
operator algebras, the Connes Embedding Problem, sometimes known
as the Connes’ Embedding Conjecture, although Connes himself never
committed to whether or not the statement was true or not. This conjecture
is quite famous, because if it were true then it would answer many other
questions in mathematics.

We now know that all of these sets are different for large enough values
of the n’s and k’s, and so that the Connes’ Embedding Conjecture is false.

The first gap between these sets was discovered by W. Slofstra [?], who
used the theory of non-local games to first show that Cq 6= Cqc and then
that Cq 6= Cqa for the n’s and k’s large enough. Now it is known that Cq is
not closed as long as n1, n2 ≥ 5 and k1, k2 ≥ 2.

In fact in [?] it is shown that for t ∈
[√

5−1
2
√
5
,
√
5+1
2
√
5

]
, and for 1 ≤ x, y ≤ 5,

if we set

p(0, 0|x, x) = t, p(0, 1|x, x) = p(1, 0|x, x) = 0, p(1, 1|x, x) = 1− t,

and for x 6= y, set

p(0, 0|x, y) =
t(5t− 1)

4
, p(0, 1|x, y) = p(1, 0|x, y) =

5t(1− t)
4

,

p(1, 1|x, y) =
(1− t)(4− 5t)

4
.

Then p ∈ Cqa(5, 2) and p ∈ Cq(5, 2) ⇐⇒ t is rational.
In [?], Coladangelo and Stark show that Cq(4, 3) 6= Cqs(4, 3).
Finally, in the monumental paper MIP ∗ = RE[?] prove that Cqa 6= Cqc

for sufficiently large values of the n’s and k’s, using methods from every-
where, but especially, complexity theory and non-local games. Thus, show-
ing that the Connes’ Embedding Problem has a negative answer.

We summarize some of what is known about these sets and their relations
below.



40 V. I. PAULSEN

• Cloc ⊆ Cq ⊆ Cqs ⊆ Cqa ⊆ Cqc,
• Cloc, Cqa, Cqc are closed for all n1, n2, k1, k2,
• Cloc ( Cq for all n1, n2, k1, k2 ≥ 2,
• Cq = Cqs = Cqa = Cqc when n1 = n2 = k1 = k2 = 2,
• Cq and Cqs are not closed when n1, n2 ≥ 5 and k1, k2 ≥ 2,
• Consequently, Cqs ( Cqa when n1, n2 ≥ 5 and k1, k2 ≥ 2,
• Cq ( Cqs for n1, n2 ≥ 4 and k1, k2 ≥ 3,
• Cqa ( Cqc for some sufficiently large values of n1, n2, k1, k2.

8. Non-Local Games

When one performs a measurement of a quantum system the outcome is
random and the probabilities that one can obtain in this fashion turn out to
have some very counterintuitive properties. In this section we will discuss
some games where using quantum mechanics to “randomly roll the dice”
leads to much higher probabilities of winning then our classical intuition
tells us is possible. We will also look at prover systems which are games
that are designed to test if a solution to a problem has been found. These
games can be classically won with probability 1 if and only if a solution to
the problem has been found. Prover systems can be used in situations where
there are so many equations and so many variables that it is impractical to
write down all the values of all the variables and check that they satisfy all
the equations. Instead, if players keep giving correct answers each time that
they play a round of a prover system game, then the Referee can feel fairly
certain that the players have indeed solved the problem. Surprisingly, there
are many prover systems for which quantum-assisted players can design a
strategy that will win with probability 1 even when no actual solution exists!
So players that have access to quantum phenomena can fool a prover system.

The games that we will look at all involve three parties. There are two
players, who we will call Alice and Bob. Alice and Bob are not competing,
but instead they are cooperating to try and return correct answers to ques-
tions posed by the third party, who we will call the Referee. The questions
are called the inputs and the answers are called the outputs of the game.

One property of these games is that whether or not the pair of answers
given by Alice and Bob is correct, depends on the pair of questions Alice and
Bob received and not on just their individual questions. So although Alice
and Bob both know the rules, i.e., they both know which pairs of answers
are right for a pair of questions, they must both give their replies without
knowing what question the other was asked. Formally, this is what is meant
by saying that they are non-communicating. It is easiest to imagine that
they are in separated soundproof rooms so that they cannot hear what the
Referee tells the other player or what the other player tells the Referee.

Let’s look at a couple of famous example of these games to illustrate these
ideas.
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8.1. The CHSH Game. The initials stand for Clauser, Holt, Shimony,
and Horne [?]. This game was designed to illustrate one of the original
inequalities that could be used to experimentally show that entanglement is
an actual phenomena [?].

In this game Alice and Bob are each given a number from the binary field
Z2 = {0, 1}, say x and y, respectively, and must return binary numbers, a
and b. They will win if the sum of their numbers a+ b is of the same parity
as the product xy. That is, they win if a+ b = xy(mod 2).

Suppose that they also know that the Referee will pick each of the four
possible input pairs, (0, 0), (0, 1), (1, 0), (1, 1) randomly and with equal prob-
ability of 1/4. I think that many of you will see that a good strategy is for
them to agree ahead of time that no matter what they receive they will
always answer with a 0. In this case a+ b = 0, which is what the value of xy
will be equal to 3/4 of the time, i.e., for all input pairs except (1, 1). This
strategy has a winning probability or value of 3/4.

This strategy is what is meant by a deterministic strategy. Deterministic
means that Alice’s and Bob’s outputs are both functions of their inputs,
and that they use the same function every time that they play the game.
Another deterministic strategy with the same value is if they always return
1. For this game it is straightforward to list all the possible deterministic
strategies, i.e., pairs of functions, and check that the strategy of always
returning 0 or of always returning 1 are the two strategies with the highest
probability of winning.

Next we want to introduce the idea of random strategies. With a random
strategy, if a player receives the same input x at two different rounds of the
game, they might give different answers. An example of a classical shared
random strategy for the CHSH game would be if the Referee rolled a die
each time he selected an input and along with their inputs, he told Alice
and Bob the number on the die. Alice and Bob would then use this random
number to adjust their strategy. It is a little harder to see, but it is still
the case that their highest winning probability is still 3/4. Roughly, this is
because at each round they are still selecting a deterministic strategy.

Now suppose that instead of a roll of the die, the external input is a
pair of laser beams, one beam shining into each players room. Each player
designs two quantum experiments to perform on their laser beam and each
measurement has two outcomes, which we can label with a 0 and a 1. A
key property of quantum mechanics is that outcomes of experiments can
be random. They will perform one experiment if they receive a 0 and the
second experiment if they receive a 1. They perform the experiment and
report their outcome back to the Referee. So in this way they randomly
generate outputs for their give inputs.

If the two laser beams are not entangled, then their optimal winning prob-
ability is still 3/4. But if the laser beams are entangled in just the right way
their winning probability can be as large as about .85, in fact, cos2(π/8), to
be precise. This is roughly because when things are entangled, the outcome
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of one experiment subtly influences the outcome of the other experiment. It
is no wonder that Einstein referred to entanglement as “...spooky action at
a distance...”.

It is important to emphasize that the laser beams contain no informa-
tion about the questions that were asked, that is they don’t vary with the
questions, they are just constantly in the same entangled state. It is this par-
ticular entangled state and the experiments that they will perform that are
chosen to achieve this higher winning probability for this particular game.

So far we have been a bit informal. Now we will show that there is a
density in Cq(2, 2, 2, 2) that gives a higher probability of winning than .75,
i.e., the best classical strategy.

For this we let HA = HB = C2 and let

ψ =
1√
2

(
e0 ⊗ e0 + e1 ⊗ e1).

Let us set

P (θ) =

(
cos2(θ) cos(θ)sin(θ)

cos(θ)sin(θ) sin2(θ)

)
,

which can be seen to be the orthogonal projection onto the line spanned by
cos(θ)e0 + sin(θ)e1. We will let P (θ)⊥ = I2 − P (θ) = P (θ + π/2). for each
input x ∈ {0, 1}, Alice will use measurement operators,

Px,0 = P (θA,x), Px,1 = P⊥x,0.

Similarly, for each input y ∈ {0, 1}, Bob will use measurement operators,

Qy,0 = P (θB,y), Qy,1 = Q⊥y,0.

In this case we have that

p(0, 0|x, y) = 〈ψ|(Px,0 ⊗Qy,0)ψ〉 =

1

2

(
〈e0 ⊗ eo|(Px,0 ⊗Qy,0)e0 ⊗ e0〉+ 〈e0 ⊗ e0|(Px,0 ⊗Qy,0)e1 ⊗ e1〉

)
+

1

2

(
〈e1 ⊗ e1|(Px,0 ⊗Qy,0)e0 ⊗ e0〉+ 〈e1 ⊗ e1(Px,0 ⊗Qy,0)e1 ⊗ e1〉

)
=

1

2

(
cos2(θA,x)cos2(θB,y)+2cos(θA,x)sin(θA,x)cos(θB,y)sin(θB,y)+sin

2(θA,x)sin2(θB,y)
)
,

with similar formulas for the p(1, 0|x, y), p(0, 1|x, y), p(1, 1|x, y).
For this particular strategy the probability of winning is

1

4

(
p(0, 0|0, 0) + p(1, 1|0, 0) + p(0, 0|0, 1) + p(1, 1|0, 1)+

p(0, 0|1, 0) + p(1, 1|1, 0) + p(0, 1|1, 1) + p(1, 0|1, 1)
)
.

We leave it to the reader to show that when we pick

θA,0 = 0, θA,1 = π/4, θB,0 = π/8, θB,1 = −π/8,

then this probability will be cos2(π/8) > .75.
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8.2. Mermin’s Magic Square and Linear Constraint Games. The
type of prover system game used by Slofstra comes from games built around
solving systems of linear equations over the binary field. Suppose that we
are given a set of m linear equations in n variables all over the binary field
Z2. We can write this in matrix-vector form as Mx = c, where M is an
m×n matrix with entries from Z2, c is an n-tuple of constants from Z2 and
x is a vector of unknowns–the variables. We make a game of it as follows:

The Referee sends Alice a number i between 1 and m, representing one
of the equations and sends Bob a number j between 1 and n representing a
variable. Alice replies with a binary n-tuple a = (a1, ..., an) and Bob replies
with a single bit b, i.e., an element of Z2. They automatically win if mi,j = 0.
When mi,j 6= 0, they win if Alice’s n-tuple is a solution to the i-th equation
and if aj = b, i.e., if Bob correctly predicted the j-th entry of her solution.

Given a conditional probability density p(a, b|x, y) we will say that is a
perfect density for the game if p(a, b|x, y) = 0 whenever (a, b) is a losing pair
of outputs for the input pair (x, y). Thus, a perfect density never produces
a losing output pair.

This game turns out to be a prover system. That is, the game has a
perfect deterministic strategy if and only if the system of equations has an
actual solution.

However, there are many linear systems for which this game has been
shown to have a perfect quantum density when there is no classical solution.
That is, by using entanglement Alice and Bob can produce correct solutions
for every round, even though there is no classical solution.

A famous example of this phenomena is Mermin’s Magic Square Game[?].
This is a system of 6 equations in 9 variables, but the system of equations
is best pictured by arranging the variables in a square:

x1 x2 x3
x4 x5 x6
x7 x8 x9

in which case the equations are that each row should have an even sum,
and the first two columns should have an even sum, but the third column
should have an odd sum. A little thought shows that it is impossible to
find a solution to these equations. Nonetheless, using entanglement, there
is a perfect quantum strategy for this game so that no matter what row or
column Alice is given and no matter what variable Bob is given they will
always give replies that satisfy the rules.

Perhaps the reader has realized by now that, besides entanglement, one
other key feature that allows these strange outcomes is that our games are
memoryless. That is if at some round Alice assigns value 1 to a particular
variable, then there is nothing that prevents her from giving that same
variable value 0 at some later round.
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Slofstra [?] obtained his separation by implicitly creating a linear system
with about 200 equations in about 200 variables that had a perfect density
in the set Cqa and no perfect density in the set Cq.

8.3. Finite Input-Output Games. We now make the ideas above a bit
more formal.

By a two-person finite input-output game we mean a tuple G =
(IA, IB, OA, OB, λ) where IA, IB, OA, OB are finite sets and

λ : IA × IB ×OA ×OB → {0, 1}
is a function that represents the rules of the game, sometimes called the
predicate. The sets IA and IB represent the inputs that Alice and Bob
can receive, and the sets OA and OB, represent the outputs that Alice and
Bob can produce, respectively. A referee selects a pair (v, w) ∈ IA × IB,
gives Alice v and Bob w, and they then produce outputs (answers), a ∈ OA
and b ∈ OB, respectively. They win the game if λ(v, w, a, b) = 1 and lose
otherwise. Alice and Bob are allowed to know the sets and the function λ
and cooperate before the game to produce a strategy for providing outputs,
but while producing outputs, Alice and Bob only know their own inputs and
are not allowed to know the other person’s input. Each time that they are
given an input and produce an output is referred to as a round of the game.

A deterministic strategy for a game is a pair of functions, h : IA → OA
and k : IB → OB such that if Alice and Bob receive inputs (v, w) then they
produce outputs (h(v), k(w)). A deterministic strategy wins every round of
the game if and only if

∀(v, w) ∈ IA × IB, λ(v, w, h(v), k(w)) = 1.

Such a strategy is called a perfect deterministic strategy.
A random strategy for a game G is a conditional probability density

p(a, b|v, w), which represents the probability that, given inputs (v, w) ∈ IA×
IB, Alice and Bob produce outputs (a, b) ∈ OA×OB. Thus, p(a, b|v, w) ≥ 0
and for each (v, w), ∑

a∈OA,b∈OB

p(a, b|v, w) = 1.

In this paper we identify random strategies with their conditional proba-
bility density, so that a random strategy will simply be a conditional prob-
ability density p(a, b|v, w).

A random strategy is called perfect if

λ(v, w, a, b) = 0 =⇒ p(a, b|v, w) = 0, ∀(v, w, a, b) ∈ IA × IB ×OA ×OB.
Thus, for each round, a perfect strategy gives a winning output with prob-
ability 1.

We next discuss local random strategies, which are also sometimes called
classical, meaning not quantum. They are obtained as follows: Alice and
Bob share a probability space (Ω, P ), for each input v ∈ IA, Alice has a
random variable, fv : Ω → OA and for each input w ∈ IB, Bob has a



45

random variable, gw : Ω→ OB such that for each round of the game, Alice
and Bob will evaluate their random variables at a point ω ∈ Ω via a formula
that has been agreed upon in advance. This yields conditional probabilities,

p(a, b|v, w) = P ({ω ∈ Ω | fv(ω) = a, gw(ω) = b}).
Note that this density will be an element of Cloc(n1, n2, k1, k2), where n1 =
|IA| and n2 = |IB| are the cardinalities of Alice and Bob’s input sets, re-
spectively, and k1 = |OA|, k2 = |OB| are the respective cardinalities of Alice
and Bob’s output sets.

A local density p(a, b|v, w) will be a perfect strategy for a game G if and
only if

∀(v, w) ∈ IA × IB, P ({ω ∈ Ω | λ(v, w, fv(ω), gw(ω)) = 0}) = 0,

or equivalently,

∀(v, w) ∈ IA × IB, P ({ω ∈ Ω | λ(v, w, fv(ω), gw(ω)) = 1}) = 1.

If we have a perfect local strategy and set

Ω1 = ∩v∈IA,w∈IB{ω ∈ Ω | λ(v, w, fv(ω), gw(ω)) = 1},
then P (Ω1) = 1 since IA and IB are finite sets; in particular, Ω1 is non-
empty. If we choose any ω ∈ Ω1 and set h(v) = fv(ω) and k(w) = gw(ω),
then it is easily checked that this is a perfect deterministic strategy.

Thus, a perfect classical random strategy exists if and only if a perfect
deterministic strategy exists. An advantage to using a perfect classical ran-
dom strategy over a perfect deterministic strategy, is that it is difficult for
an observer to construct a deterministic strategy even after observing the
outputs of many rounds.

For t ∈ {loc, q, qs, qa, qc}, we say that p(a, b|v, w) is a perfect t-strategy
for a game provided that it is a perfect strategy that belongs to the set Ct.

8.4. Values of Strategies. Suppose that we are given a game G and a
probability density on its set of inputs, i.e., a map,

Π : IA × IB → [0, 1]

satisfying
∑

x∈IA,y∈IB Π(x, y) = 1. In this case, given a strategy p(a, b|x, y)
the probability that we will win the game is called the value of the strat-
egy, denoted ω(G,Π, p) and is given by summing the probability that we
receive (x, y) times the probability that we give a winning reply (a, b). This
can seen to be given by the formula

ω(G,Π, p) :=
∑
x,y,a,b

Π(x, y)p(a, b|x, y)λ(x, y, a, b).

Note that a perfect strategy will always have value 1, no matter what
density the Π is equal to. Conversely, if Π(x, y) 6= 0, ∀x, y, then any strategy
with value 1, will have to be perfect.

For each t ∈ {loc, q, qs, qa, qc} we set

ωt(G,Π) := sup{ω(G,Π, p) : p ∈ Ct}.



46 V. I. PAULSEN

Since the closure of Cq and Cqs are both equal to Cqa, and taking a supremum
over a set is the same as taking it over its closure, we have

ωq(G,Π) = ωqs(G,Π) = ωqa(G,Π).

So we are really only interested in the cases t ∈ {loc, q, qc}, although some-
times it is nice to use the other instances.

We caution the reader that our notation is not standard, often ωloc is
denoted ω, ωq is denoted ω∗ and ωqc is denoted ω̃. Also many authors
include the density Π as part of the definition of the game.

In this language, our first example was that for the uniform density on
inputs,

ωloc(CHSH,Π) = .75, ωq(CHSH,Π) = cos2(π/8).

Since Cq(2, 2, 2, 2) = Cqc(2, 2, 2, 2) we also have that

ωqc(CHSH,Π) = cos2(π/8).

In the paper MIP*=RE, a game G is produced such that, for the uniform
density on inputs one has

ωqc(G,Π) = 1, ωq(G,Π) ≤ 1/2,

thus showing that Cqa ( Cqc. Thereby, disproving the Connes’ Embedding
Conjecture.

8.5. The Graph Colouring and Graph Homomorphism Games. A
graph G is specified by a vertex set V (G) and an edge set E(G) ⊆ V (G)×
V (G), satisfying (v, v) /∈ E(G) and (v, w) ∈ E(G) =⇒ (w, v) ∈ E(G).
The c-coloring game for G has inputs IA = IB = V (G) and outputs
OA = OB = {1, ..., c} where the outputs are thought of as different colors.
They win provided that whenever Alice and Bob receive adjacent vertices,
i.e., (v, w) ∈ E, their outputs are different colors and when they receive
the same vertex they output the same color. Thus, (v, w) ∈ E(G) =⇒
λ(v, w, a, a) = 0, ∀a, λ(v, v, a, b) = 0, ∀v ∈ V (G), ∀a 6= b and the rule
function is equal to 1 for all other tuples.

We claim that this game is a prover system for the chromatic number
χ(G), in the sense that a perfect deterministic strategy exists if and only if
χ(G) ≤ c. This is one of the HW problems.

Given two graphs G and H, a graph homomorphism from G to H is a
function f : V (G) → V (H) with the property that (v, w) ∈ E(G) =⇒
(f(v), f(w)) ∈ E(H). The graph homomorphism game from G to H
has inputs IA = IB = V (G) and outputs OA = OB = V (H). They win
provided that whenever Alice and Bob receive inputs that are an edge in G,
their outputs are an edge in H and that whenever Alice and Bob receive the
same vertex in G they produce the same vertex in H.

A perfect deterministic strategy exists for the graph homomorphism game
if and only if there is an actual graph homomorphism from G to H.

Finally, it is not difficult to see that if Kc denotes the complete graph on
c vertices then a graph homomorphism exists from G to Kc if and only if
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G has a c-coloring. This is because any time (v, w) ∈ E(G) then a graph
homomorphism must send them to distinct vertices in Kc. Indeed, the rule
function for the c-coloring game is exactly the same as the rule function for
the graph homomorphism game from G to Kc.

Given a graph G we set χt(G) equal to the least c for which there exists a
perfect t-strategy for the c-coloring game for G. The above inclusions imply
that

χ(G) = χloc(G) ≥ χq(G) ≥ χqs(G) ≥ χqa(G) ≥ χqc(G).

In [?] it is shown that χq(G) = χqs(G) for all graphs. Currently, it is
unknown if there are any graphs that separate χq(G), χqa(G) and χqc(G)
or whether these three parameters are always equal. Examples of graphs
are known for which χ(G) > χq(G). In fact, χq(G) can be exponentially
smaller. For details, see [?] and [?].

Similarly, we say that there is a t-homomorphism from G to H if and
only if there exists a perfect t-strategy for the graph homomorphism game
from G to H. It is unknown if q-homomorphisms, qa-homomorphisms and
qc-homomorphisms are distinct or coincide.

References

[1] Arveson, William B.; Subalgebras of C∗-algebras. Acta Math. 123 (1969), 141?224.
[2] Choi, Man Duen; Completely positive linear maps on complex matrices. Linear Al-

gebra Appl. 10 (1975), 285?290.
[3]
[4] Coladangelo, A; Stark, J., Unconditional separation of finite and infinite-dimensional

quantum correlations, arXiv:1804.05116
[5] Conway, John:; A course in functional analysis,
[6] Davidson, Kenneth R.; C*-algebras by example,
[7] Dunford, Nelson; Schwartz, Jacob T, Linear operators. Part II: Spectral theory,

Reprint of the 1963 original. Wiley Classics Library. A Wiley-Interscience Publi-
cation. John Wiley & Sons, Inc., New York, 1988.

[8] Dykema, K.; Paulsen, V.; Synchronous Correlation Matrices and Connes’
Embedding Conjecture, Journal of Mathematical Physics, 57, 015215
http://dx.doi.org/10.1063/1.4936751

[9] Dykema, K.; Paulsen, V.; Prakash, J., Non-closure of the set of quantum
correlations via graphs, Comm. Math. Phys. 365 (2019), no. 3, 1125?1142.
https://doi.org/10.1007/s00220-019-03301-1

[10] Fritz, T.;
[11] Goberg, I.C. and Krein, M.G.; Introduction to the Theory of Linear Nonselfadjoint

Operators, Translations of Mathematical Monographs, American Mathematical Soci-
ety, 1969

[12] S. J. Harris, S. K. Pandey, and V. I. Paulsen, Entanglement and Non-locality.
[13] Helton, J.W.; Meyer, K.P.; Palsen, V.I.; Satriano, M., Algebras, synchronous games

and chromatic numbers of graphs, New York J. Math. 25 (2019), 328?361.
[14] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry Yuen,

MIP*=RE, arXiv:2001.04383
[15] M. Junge, M. Navascues, C. Palazuelos, D. Perez-Garcia, V. B. Scholz, R. F. Werner,

Connes’ embedding problem and Tsirelson’s problem, J. Math. Phys. 52, 012102
(2011).



48 V. I. PAULSEN

[16] Kim, S. J.; Paulsen, V.I.; Schaffhauser, C., A synchronous game for binary constraint
systems, Journal of Mathematical Physics 59, 032201 (2018); doi: 10.1063/1.4996867

[17] Ozawa, N.; About the Connes Embedding Conjecture—Algebraic approaches, Jpn. J.
Math., 8 (2013), 147–183.

[18] Paulsen, Vern I.; Completely bounded maps and operator algebras, Cambridge Uni-
versity Press, 2002.
[?] Paulsen, V.; Severini, S.; Stahlke, D.; Tovodor, I.; Winter, A., Estimating quantum
chromatic numbers, J. Funct. Anal. 270 (2016), no. 6, 2188?2222.

[19] Paulsen, Vern I.; Todorov, Ivan G.; Quantum chromatic numbers via operator sys-
tems, Q. J. Math. 66(2015), no. 2, 677-692.

[20] Pedersen, G.; C*-algebras and their automorphism groups,
[21] Slofstra, W.;

Institute for Quantum Computing and Department of Pure Mathematics,
University of Waterloo, Waterloo, ON, Canada N2L 3G1

Email address: vpaulsen@uwaterloo.ca


