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Catalytic Production of Entanglement

Suppose that Alice and Bob have their own finite dimensional state
spaces, Ha and Hp and a shared finite dimensional bipartite
resource space R4 ® Rpg.

Can we "catalytically” produce entanglement using only local
operations? Say given the EPR state, b = %(]0) ®10) + 1) ® 1))
can we find unitaries

Up  HARRaA > HAaRRaand Ug : R @ Hg — R ® Hp
and a unit vector ) € R4 ® Rpg such that
Us@Ug : (Ha®Ra) @ (Re@Hp) = (HaA®RA)® (R @ Hp)

satisfies

Ua® Up(|0) @1 ®]0)) = (|0>®w®\0>+|1>®w®\1>) ~ bR1p?

%\
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Hayden and van Dam introduced this question and showed that
the answer is no. The proof of this "no-go” fact is a simple
argument using Schmidt coefficients.

However, they(together with some later improvements) also
showed that given ANY vector

¢=Zau\i>® j) € Ha® Hp
i\j
and any e > 0 there exist finite dimensional resource spaces

R a, Rg(depending on €) and unit vectors ¢, 1. € Ra ® Rpg with
I — 1e|| < € and unitaries Uga, Ug such that

Ua® Up(10) @ 9 @0)) = > ijj|i) @ ¢he ® ) ~ ¢ ® .

i7j

They referred to this as embezzlement of entanglement.
They also gave some estimates on the dimensions of R4 and R
needed to carry out this process as a function of .
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Their results suggest that in some limiting sense we should be able
to do this operation exactly. However, the same Schmidt
coefficient argument shows that one still cannot do this for e =0
even if one allows R4 and Rg to be infinite dimensional.

Thus we have a "task” that can be carried out to an arbitrary
degree of accuracy in finite dimensions, but even as we let the
dimensions become infinite, we still cannot carry it out exactly.
This is a non-closure result for the tensor model, want to explain
this more precisely.

Note that

(UA & /RB X /HB)(IHA & IRA X UB)
(hiy @ Ir, ® Ug)(Ua ® Irg @ hyp).
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The Commuting Operator Framework

We no longer require that the resource space have a bipartite
structure.

Instead, we only ask for a resource space R, and unitaries, Ua on
Ha® R and Ug on R ® Hp such that (Ua ® idg) commutes with
(ida® Ug) on Ha @ R @ Hp.

UA UA
Us Us
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Theorem (Cleve-Liu-P, Harris-P)

Let Ha and Hpg be finite dimensional. Given any unit vector
=2 ijli) ®|j) € Ha® Hp there exists a Hilbert space R, a
unit vector ¥ € ‘R, unitaries

Upr - HARR > HARR and Ug : RQHpg — R ® Hp,
such that
(Ua ® hig)(hiy © Ug) = (hiy ® Ug)(Ua ® hyg),
with

(Ua® hip) (1, ® Up)(10) 29 ®10)) = > i [N @9 @ 1)) ~ p@p.

i
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Theorem (Cleve-Liu-P, Harris-P)

Let Ha and Hpg be finite dimensional. Given any unit vector
=2 ijli) ®|j) € Ha® Hp there exists a Hilbert space R, a
unit vector ¥ € ‘R, unitaries

Upr - HARR > HARR and Ug : RQHpg — R ® Hp,
such that
(Ua ® hig)(hiy © Ug) = (hiy ® Ug)(Ua ® hyg),
with
(Ua® hyg)(hi,® Ug)(10) 29 @10)) = Y aij [N @9 @) ~ @1,
i

Briefly, catalytic production of entanglement is possible in the
commuting operator model.
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About the Proof

Suppose that H4 = C" and identify C"@ R =R @& --- B R(n
times). Using this identification, we write U4 = (U;j) where

Uije B(R), 0<i,j <n—1. Similarly, if Hg = C™, then we may
identify Ug = (Vi) where Vi, € B(R),0< k,/ < m—1.

Lemma

(Ua ® idg) commutes with (ida ® Ug) if and only if

U,'J'Vk,/ == VkJU,'J and U;ijvk,l == Vk,/U?:J- for all i,_j, k, /.

This last condition is called *-commuting.

Thus, we see that having commuting operator frameworks as
above is exactly the same as having operator matrices Ua = (U; )
and Ug = (Vi) that yield unitaries and whose entries pairwise
*_commute.
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The C*-algebra U,.(n)

L. Brown introduced a C*-algebra denoted U,c(n). It has n?
generators u;; and the "universal” property that whenever there
are n? operators U;; on a Hilbert space R such that (U; ) defines
a unitary operator on C” ® R then there is a *-homomorphism
T U,,C(n) — B(R) with 7T(U,'J) = U,'J.

Thus, a representation of Upc(n) ®@max Unc(m) corresponds to
operators U; j, Vi ; where the U;'s *-commute with the Vi /'s
such that (U; ) and (V) are unitary operator matrices.
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Theorem (Cleve-Liu-P, Harris-P)

Perfect embezzlement of a state ¢ = [ D" 1 v kli) ® |k) is
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Theorem (Cleve-Liu-P, Harris-P)

Perfect embezzlement of a state ¢ = [ D" 1 v kli) ® |k) is
possible in a commuting operator framework if and only if there is
a state s on Upc(n) ®max Unc(m) satisfying s(uj1 ® vk 1) = o k.
The approximate embezzlement results yield states on

Unc(n) @min Unc(m) that converge to a state on

Unc(n) @min Unc(m) satisfying the above equations, and hence the
desired state on Upc(n) ®max Unc(m).

The occurrence of min and max tensors in different places lead me
to wonder what is their relationship? Maybe they are the same?
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Sam Harris's Results

Theorem (Harris)
The following are equivalent.

1. Connes’ Embedding conjecture is true.

2. Unc(n) @min Unc(m) = Unc(n) @max Unc(m), ¥n, m.
3. Unc(2) @min Unc(2) = Unc(2) @max Unc(2)-
4

. Certain "unitary correlation sets” satisfy
UCqy(n, m)~ = UCyc(n, m), Vn, m.

The equivalence of the first three, is the analogue of Kirchberg's
theorem relating Connes to tensor products of free group
C*-algebras. The equivalence of the first and last is the analogue
of the results of Junge, Navascues, Palazuelas, Perez-Garcia,
Scholz, Werner and separately, Ozawa, relating CEP to Tsirelson's
problems.
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Reduced Unitary Correlation Sets

Suppose that we are given U;j € M,, 1 <i,j < n such that

U = (U;j) € My(Mp) is unitary and Vi, € Mg, 1 < k, I < m such
that V = (Vi) € Mn(M,) is unitary. Let ¢ € CP ® C? with

1]l =1}, and set xij k1 = (¥[(Uij @ Vig)d).

We let By(n, m) € M, ® My, denote the set of all matrices

X = (Xij k) obtained in this manner.

The set Byc(n, m) is defined similarly except we replace the tensor
product of two spaces by a single space and instead demand that
the U;;'s *-commute with the V) /'s.

Here are some of the things that we know/don't know about these
sets.
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Theorem (Harris-P)
» By(n,m) C Bgc(n, m).

» For each n,m > 2, By(n, m) not closed—consequence of
embezzlement theory

» By(n,m)” = Bgc(n,m), Vn,m > 2 <= Connes Embedding
Problem is true.

Harris showed that B,(2,2) not closed implies that C4(8,8) not
closed.
Next we give an operational meaning to these sets.
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The game G is defined as follows: there is a set of orthogonal
vectors Y1, ...,k € Ha ® Hp, and probabilities py, ..., px all
known to A and B. With probability p;, A and B receive ;. They
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Theorem (Harris)
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Quantum Input-Classical Output XOR Games

The game G is defined as follows: there is a set of orthogonal
vectors Y1, ...,k € Ha ® Hp, and probabilities py, ..., px all
known to A and B. With probability p;, A and B receive ;. They
each perform a local(or commuting) operation and binary
measurement on their space and a shared resource space and
return bits a, b. They win if a+ b = i(mod2). This defines the
game G. Set H = S (—1) i) (wil.
Theorem (Harris)
Each protocol yields a matrix X € Bg(n, m)(resp. Bqyc(n, m)) such
that the bias of that protocol is Re( Tr(HX)). In particular, the
entangled biases of this game are given by

» biasq(G) = sup{Re(Tr(HX)) : X € Bq(n, m)}

» biasqc(G) = sup{Re(Tr(HX)) : X € Bgc(n,m)},

» CEP is true iff biasq(G) = biasqc(G),VG.
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Self-embezzlement

Suppose that R = Ha ® Hp. How "nearly” can we catalytically
produce the catalytic state?
We have the following " constant gap” theorem.

Theorem (Cleve-Collins-Liu-P)
Let Hp and Hp be finite dimensional. If
W = Zi,j Bijli) ®j) € Ha ® Hp and its highest Schmidt

2

coefficient satisfies \1 < /3,
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Self-embezzlement

Suppose that R = Ha ® Hp. How "nearly” can we catalytically
produce the catalytic state?
We have the following " constant gap” theorem.

Theorem (Cleve-Collins-Liu-P)

Let Hp and Hp be finite dimensional. If

Y =>;Bijli)®lj) € Ha® Hp and its highest Schmidt
coefficient satisfies \1 < \/g and Up € B(Ha ® Ha),

Ug € B(Hp ® Hp) are unitaries then

1Ua® U(10) @9 @10)) = > Bijliy @ v & |j)| >

iJ

(3—2v2)

UJ\I\.)

and this bound is independent of the dimension of H and Hp.

Vern Paulsen UWaterloo



This gap vanishes in the commuting operator model.

Vern Paulsen UWaterloo



This gap vanishes in the commuting operator model.

Theorem (CCLP)

Let Ha and Hp be infinite dimensional, set R = Ha ® Hpg, and
let 1) € R be a unit vector as before.
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This gap vanishes in the commuting operator model.

Theorem (CCLP)

Let Ha and Hp be infinite dimensional, set R = Ha ® Hpg, and
let 1 € R be a unit vector as before. Then there exist unitaries

Ua € B(HA®R) and Ug € B(R ® Hg) such that (Ua ® ly,) and
(hy, ® Ug) commute and
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This gap vanishes in the commuting operator model.

Theorem (CCLP)

Let Ha and Hp be infinite dimensional, set R = Ha ® Hpg, and
let 1 € R be a unit vector as before. Then there exist unitaries

Ua € B(HA®R) and Ug € B(R ® Hg) such that (Ua ® ly,) and
(hy, ® Ug) commute and

(Un® hyg) (i, ® Up)(10) @9 ®10)) = Y Bijly @y @) ~ ¢ @1,

ij
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Sketch of the proof. Different from the one found in CCLP.

Vern Paulsen UWaterloo



Sketch of the proof. Different from the one found in CCLP.

From the earlier embezzlement results we can prove that we have
vyER, Us€ B(HA®R) and Ug € B(R ® Hg), with
R=Hsi®HB.
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From the earlier embezzlement results we can prove that we have
vyER, Us€ B(HA®R) and Ug € B(R ® Hg), with

R =Ha® Hp. Such that Us ® hy, commutes with ;, ® Ug
and

(Ua @ hg)(hiy © Us)(|0) @ v @ 0)) ~ ¢ @ .

Choose a unitary W € B(R) with W =~

Vern Paulsen UWaterloo



Sketch of the proof. Different from the one found in CCLP.

From the earlier embezzlement results we can prove that we have
vyER, Us€ B(HA®R) and Ug € B(R ® Hg), with

R =Ha® Hp. Such that Us ® hy, commutes with ;, ® Ug
and

(Ua @ hyg)(hi, © UB)(10) @7 ®[0)) = ¥ @ .
Choose a unitary W € B(R) with W = ~ set

gé = (/HA ® W)*UHA(I’HA & W) and
Ug = (W®IHB)*UB(W®IHB)
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Sketch of the proof. Different from the one found in CCLP.

From the earlier embezzlement results we can prove that we have
vyER, Us€ B(HA®R) and Ug € B(R ® Hg), with

R =Ha® Hp. Such that Us ® hy, commutes with ;, ® Ug
and

(Ua @ hg)(hiy © Us)(|0) @ v @ 0)) ~ ¢ @ .

Choose a unitary W € B(R) with W = ~ set
gé = (/HA ® W)*UHA(I’HA & W) and N
U = (W ® hy )" Ug(W & ly,) then Us ® by, commutes with

IHA X UB and
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Sketch of the proof. Different from the one found in CCLP.

From the earlier embezzlement results we can prove that we have
vyER, Us€ B(HA®R) and Ug € B(R ® Hg), with

R =Ha® Hp. Such that Us ® hy, commutes with ;, ® Ug
and

(Ua @ hg)(hiy © Us)(|0) @ v @ 0)) ~ ¢ @ .

Choose a unitary W € B(R) with W = ~ set
gé = (/HA ® W)*UHA(I’HA & W) and N
U = (W ® hy )" Ug(W & ly,) then Us ® by, commutes with

/ﬂi@) Ug and s
(Ua @ hyg)(hi, © Ug)([0) @ ¥ @ 10)) ~ ¢ @ 4.
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