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Vidick – Exercise Session 1

1.1 Warm-up

Exercise 1.1. 1. Show that any non-signaling strategy that is also deterministic is classical.

2. For X = Y = A = B = {0, 1}, give an example of a strategy that is non-signaling but is not
classical.

Exercise 1.2. 1. Show that there is a classical strategy which succeeds in the game GCHSH with proba-
bility 3/4.

2. Show that there is a non-signaling strategy which succeeds in GCHSH with probability 1.

3. Show that 3/4 is best achievable for classical strategies. [Hint: first consider classical deterministic
strategies. Such a strategy is represented by 4 bits only.]

Exercise 1.3. What is the smallest possible size for the question and answer sets in a game whose non-
signaling value is strictly larger than its classical value? And its quantum value?

Exercise 1.4. Say that a game is nontrivial if all pairs of questions with π(x, y) > 0 have at least one
accepting answer to them. For a nontrivial XOR game G, show that the non-signaling bias satisfies βns(G) =
1.

Exercise 1.5. Prove Naimark’s dilation theorem. State and prove a version of the theorem that simultane-
ously “dilates” multiple POVM {Axa}a∈A acting on the same Hilbert space H.

Exercise 1.6 (Odd cycle game). Let n be an odd integer. In the odd cycle game of order n, we take X =
Y = Zn and A = B = {−1, 1}. The distribution π is uniform on {(i, j) ∈ Zn × Zn : i ∈ {t − 1, t}}.
The game predicate is V(i, j, a, b) = 1 if j = i + 1 and ab = −1 or j = i and ab = 1.

1. Verify that this is an XOR game and compute its classical value.

2. Design a quantum strategy that uses a single EPR pair and succeeds with probability cos2(π/4n).

3. (Harder:) Show that this is optimal.
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1.2 Tirelson’s bound, and theorem

Exercise 1.7. Let A0, A1 and B0, B1 be observables on Cd. Show that

(A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1)
2 = ((A0 + A1)⊗ B0 + (A0 − A1)⊗ B1)

2 (1.1)

= 4 Id⊗ Id+(A1A0 − A0A1)⊗ (B0B1 − B1B0) .

Deduce a new proof of Tsirelson’s upper bound on the quantum bias of the CHSH game.

Exercise 1.8. 1. For any d ≥ 1, show that there exists Hermitian matrices C1, . . . , Cd ∈ CD×D where
D = 2⌊d/2⌋ such that C2

i = Id for all i, and {Ci, Cj} = CiCj + CjCi = 0 for all i ̸= j.

2. For u, v ∈ Rd let U = ∑i uiCi and V = ∑i viCi. Give simple expressions for U2, C2, and ⟨ϕD|U ⊗
V|ϕD⟩, where |ϕD⟩ is the maximally entangled state in dimension D.

3. Show that given a vector solution to SDP(G) it is always possible to find a quantum strategy that
achieves exactly the same value. (Be careful with complex numbers!)

Exercise 1.9. Grothendieck’s inequality states that there exists a universal constant KR
G ∈ R such that for

any integer n and any M = (Mij) ∈ Rn×n,

sup
d, u⃗i ,⃗vj∈Cd

∥u⃗i∥,∥v⃗j∥≤1

∣∣∣∑
i,j

Mij u⃗i · v⃗j

∣∣∣ ≤ KG max
xi ,yj∈[−1,1]

∣∣∣∑
i,j

Mij xiyj

∣∣∣ .

The constant KR
G is known to satisfy KR

G ≤ 1.782 . . .. Furthermore, if M = (Mij) ∈ Cn×n and supremum
on the right-hand side is taken over all complex xi, yj ∈ C such that |xi|, |yj| ≤ 1 then the inequality holds
with an improved constant KC

G < KR
G such that KC

G ≤ 1.405 . . ..

• What is the best constant K such that β∗(G) ≤ Kβ(G), for any XOR game G?

Exercise 1.10. Suppose that G is an XOR game such that β∗(G) = 1. Show that β(G) = 1.

1.3 Complexity aspects

Exercise 1.11. Show that exact computation of the classical bias of an XOR game is NP-hard. (Formally,
this should be made in a decision problem — for example, show that there exists a real a such that deciding
if β(G) ≥ a or β(G) < a is NP-hard.)

Exercise 1.12. Relate the maximum success probability in the clause-vs-variable game to the largest number
of clauses of φ that can be simultaneously satisfied by any assignment. Your relation need not be perfectly
tight, but it should at least imply that the maximum success probability is 1 if and only if the formula is
satisfiable.

1.4 Parallel repetition of XOR games

Exercise 1.13. Given two XOR games G1 = (X1,Y1,A1,B1, π1, V1) and G2 = (X2,Y2,A2,B2, π2, V2)
define the AND game G = G1 ∧G2 by setting X = X1 ×X2, Y = Y1 ×Y2, A = A1 ×A2, B = B1 ×B2,

π((x1, x2), (y1, y2)) = π1(x1, y1)π2(x2, y2) (1.2)
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and
V((x1, x2), (y1, y2), (a1, a2), (b1, b2)) = V1(x1, y1, a1, b1)V2(x2, y2, a2, b2) .

In words, the game G corresponds to playing G1 and G2 “in parallel” by sending one pair of questions for
each game and accepting if and only if both pairs of questions are answered correctly. The goal of this
exercise is to study how the bias of G relates to that of G1 and G2.

1. Consider the following nonlocal game GF. In this game we have X = Y = A = B = {0, 1},
π is uniform over {(0, 0), (0, 1), (1, 0)} and we have V(x, y, a, b) = 1 if (a ∨ x) ̸= (b ∨ y) and 0
otherwise.

(a) Is GF an XOR game?

(b) Compute ω(GF).

(c) Show that ω(GF ∧ GF) = ω(GF).

The previous question shows that there are nonlocal games whose value does not decrease under repetition.
Moreover, it is possible (but harder) to show that the quantum value of GF also does not decrease under
repetition.

In the remainder of the exercise we show that this does not happen for the quantum value of an XOR
game G.

2. Show that the quantum bias β∗(G) can be expressed as the optimum of the following semidefinite
program

β∗(G) = max ∑
i,j

Gij Mij

s.t. X =

(
R M

M† S

)
≥ 0

∀i , Rii = 1
∀j , Sjj = 1 .

3. Verify that the dual program can be expressed as

β∗(G) = min
1
2 ∑

i
ui +

1
2 ∑

j
vj (1.3)

s.t.
(

Diag(u) −G
−G† Diag(v)

)
≥ 0

u ∈ Rn, v ∈ Rm .

4. Show that for any optimal solution (u, v) to the dual, ∑i ui = ∑j vj.

5. For the special case of G = GCHSH, exhibit a dual solution that certifies β∗(GCHSH) ≤ cos2 π/8,
thus providing a third proof of Tsirelson’s bound.

Before analyzing the parallel repetition of two XOR games, it is convenient to study their “XOR repetition”.
The XOR of two XOR games G1 and G2 is the XOR game G = G1 ⊕G2 with X = X1 ×X2, Y = Y1 ×Y2,
and if G(1) and G(2) are the game matrices of G1 and G2 respectively then the game matric of G is

G(x1,y1),(x2,y2) = G(1)
x1,y1 G(2)

x2,y2 .
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In other words, the game matrix for G is obtained by taking the tensor product of the game matrices for G1
and G2. (Make sure that you understand the difference between this definition and the definition of G1 ∧ G2.
In particular, recall that the game predicate V is {0, 1}-valued, whereas the game matrix G is real-valued.)

6. Verify that β∗(G1 ⊕ G1) ≥ β∗(G1)β∗(G2).

7. We now prove the opposite inequality.

(a) Given dual feasible solutions (u1, v1) and (u2, v2) to the dual program (1.3) for G1 and G2 re-
spectively, show that (u, v) = (u1 ⊗ u2, v1 ⊗ v2) is a feasible dual solution to the dual program
for G.

(b) Deduce that β∗(G1 ⊕ G1) ≤ β∗(G1)β∗(G2).

8. Show that for any XOR games G1 and G2, it holds that ω∗(G1 ∧ G2) = ω∗(G1) ∧ ω∗(G2).

9. Generalize this equality to the case of n XOR games.
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Vidick – Exercise Session 2

Exercise 2.1. Let Y1, . . . , Y9 be an operator solution to the Magic Square system. Show that there is an
orthonormal basis with respect to which

Y1 = (I2 ⊗ σZ)⊗ Id Y2 = (σZ ⊗ I2)⊗ Id Y3 = (σZ ⊗ σZ)⊗ Id
Y3 = (σX ⊗ I2)⊗ Id Y4 = (I2 ⊗ σX)⊗ Id Y5 = (σX ⊗ σX)⊗ Id
Y7 = (σX ⊗ σZ)⊗ Id Y8 = (σZ ⊗ σX)⊗ Id Y9 = (σY ⊗ σY)⊗ Id

,

where I2 denotes the identity on C2 and Id is the identity on Cd for some d.

Exercise 2.2. Show that the conclusion of Lemma ?? holds under the following weaker assumption: |ψ⟩ABE ∈
(C2)⊗n

A ⊗H⊗n
B ⊗HE with HB arbitrary, and for every i ∈ {1, . . . , n},(

σX,i
)

A ⊗
(
Xi

)
B|ψ⟩ABE =

(
σZ,i

)
A ⊗

(
Zi
)

B|ψ⟩ABE = |ψ⟩ABE ,

with Xi and Zi arbitrary binary observables on HB. [Hint: Make a careful use of Claim ??]

Exercise 2.3. A game is called symmetric if X = Y and A = B, the distribution on questions π is invariant
under permutation of the two questions, π(x, y) = π(y, x) for all (x, y), and the verification predicate is
symmetric as well, i.e. V(x, y, a, b) = V(y, x, b, a) for all (x, y, a, b). Define a strategy (|ψ⟩, {Axa}, {Byb})
to be symmetric if HA = HB, |ψ⟩ is invariant under exchange of the two subsystems, and Axa = Bxa for
all x, a.

Show that whenever a game G is symmetric then for any strategy (|ψ⟩, {Axa}, {Byb}) that succeeds
with some probability p in the game there is a symmetric strategy (|ψ̃⟩, {Ãxa}) that succeeds with the same
probability.

Exercise 2.4. The BLR linearity game is a nonlocal game which can be described as follows:

• The referee selects a, a′ ∈ Zn
2 uniformly at random. She sends (a, a′) to one player and a, a′, or a+ a′

to the other player.

• The first player replies with two bits e1, e2 ∈ {±1}, and the second with a single bit f ∈ {±1}. The
referee accepts if and only if the player’s answers satisfy the natural relation, e.g. if the third player
received a + a′ then it should be that f = e1e2.

1. A classical deterministic strategy in the game can be modeled in the obvious way by three functions
fA,1, fA,2 : (Zn

2)
2 → {±1}, representing Alice’s two answer bits, and fB : Zn

2 → {±1}, represent-
ing Bob’s single answer bit. Show that if ( fA,1, fA,2, fB) succeeds with probability 1 − ε in the game
then

Ea,a′∈Zn
2

[
fB(a) fB(a′) fB(a + a′)

]
≥ 1 − O(ε) .
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2. Using the Fourier expansion fB(a) = ∑S⊆{1,...,n} f̂B(S)χS(a), where χS(a) = ∏i∈S ai, deduce from
the previous question that for any near-optimal strategy fB must have one “large” (to be quantified as
a function of ε in your answer) Fourier coefficient.

3. Conclude that successful strategies in the BLR linearity game must be close to “linear.”

4. Extend the previous reasoning to quantum strategies. In particular, give a clear formulation for the
statement that the BLR linearity game, as described above, is “sound against quantum strategies.”
[Hint: you may find it easier to first only consider strategies that use a maximally entangled state,
i.e. HA = HB = Cd and |ψ⟩ = |ϕd⟩. For this case, extend the previous proof to “matrix-valued”
functions defined from the strategy and use Fourier analysis directly at the matrix level. What is the
quantum analogue of having a large Fourier coefficient? The general case is similar, but a little more
technical]
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