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Part 1:

Basic theory of the XY Spin Chain

Going back to:

Lieb-Schultz-Mattis 1961 (Katsura 1962, Pfeuty 1970, Barouch
and McCoy 1971)



L interacting 1
2
-spins:

HL = C2
1 ⊗ . . .⊗ C2

L, dimH = 2L

Canonical (up/down-spin) product basis:

e0 = | ↑〉 =

(
1

0

)
, e1 = | ↓〉 =

(
0

1

)
(downspins = particles)

eα = eα1 ⊗ . . .⊗ eαL
, α ∈ {0, 1}L

Local observables: For A ∈ C2×2 let

Aj = I ⊗ . . .⊗ A⊗ . . .⊗ I (acting non-trivially on j-th spin)



Pauli matrices:

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
Spin raising and spin lowering operators:

a :=
1

2
(σX + iσY ) =

(
0 1
0 0

)

a∗ :=
1

2
(σX − iσY ) =

(
0 0
1 0

)

aa∗ =

(
1 0
0 0

)
, a∗a =

(
0 0
0 1

)
=: N



Isotropic XY spin chain in transversal field:

H = HXY = −
L−1∑
j=1

µj(σ
X
j σ

X
j+1 + σYj σ

Y
j+1)−

L∑
j=1

ωjσ
Z
j

= −2
L−1∑
j=1

µj(a
∗
j aj+1 + a∗j+1aj)−

n∑
j=1

ωj(I − 2a∗j aj)

Variable coefficients: ωj ∈ R, µj ∈ R \ {0}

Jordan-Wigner transform:

c1 := a1, cj := σZ1 . . . σ
Z
j−1aj , j = 2, . . . , n

Canonical anti-commutation relations (CAR):

{cj , c∗k} = δjk I , {cj , ck} = {c∗j , c∗k} = 0



Fermionic represenation of H :

H = −2
L−1∑
j=1

µj(c
∗
j cj+1 + c∗j+1cj)−

L∑
j=1

ωj(I − 2c∗j cj)

= 2c∗ Mc + E0I

Here E0 := −
∑

j ωj , c
∗ := (c∗1 , . . . , c

∗
L),

c :=

c1
...
cn

 , M :=


ω1 −µ1

−µ1
. . .

. . .
. . .

. . . −µL−1

−µL−1 ωL


M is the effective one-particle Hamiltonian of the XY chain,
acting on an L-dimensional space.



Bogolubov transformation (special):
M real symmetric, so there exists orthogonal U such that

UMUt = Λ = diag (λj)

Let

b =

b1
...
bL

 := Uc

=⇒ {bj}Lj=1 satisfy CAR and

H = 2
L∑

j=1

λjb
∗
j bj + E0I = 2b∗Λb + E0I

Free Fermion system!



Properties of the Fermionic operators {bj}Lj=1:

I b∗j bj , j = 1, . . . , L, pairwise commuting orthogonal projections

I N =
⋂L

j=1 ker (b∗j bj) =
⋂L

j=1 ker (bj) one-dimensional.
Pick normalized Ω ∈ N (“vacuum state”).

I ψα := (b∗1)α1 . . . (b∗L)αLΩ, α ∈ {0, 1}L form ONB of H.

I All ψα are eigenvectors of each b∗j bj :

b∗j bjψα =

{
0 if αj = 0
1 if αj = 1



Eigenvectors and eigenvalues of H :

All ψα are also eigenvectors of H:

Hψα =

2
∑

j :αj=1

λj + E0

ψα

σ(H) =

2
∑

j :αj=1

λj + E0 : α ∈ {0, 1}L


Ground state energy:

2
L∑

j=1

min{0, λj}+ E0

non-degenerate ⇐⇒ λj 6= 0 for all j



Finding eigenvalues and eigenvectors of H has been reduced to
finding eigenvalues and eigenvectors of

M =


ω1 −µ1

−µ1 ω2
. . .

. . .
. . . −µL−1

−µL−1 ωL


Lieb, Schultz, Mattis (and others in 1960s):

ωj = C1, µj = C2 =⇒ Exactly solvable!

In general: Dimension of Hilbert space reduced from 2L to L.
Hope: Qualitative properties of M imply qualitative properties of
H.



Exercise 1 (Dynamics of cj):

Denote the Heisenberg dynamics of A ∈ B(HL) by

τt(A) := e itHAe−itH

Show that

τt(cj) =
∑
`

(
e−2iMt

)
j`
c`

Thus: One-particle dynamics e−2iMt determines many-body
dynamics τt(cj).

Problem: Jordan-Wigner is non-local. How to “undo”
Jordan-Wigner to get dynamics of local operators such as aj , a

∗
j ?



Solution to Exercise 1:

Lemma

τt(bk) = e−2itλkbk , τt(b
∗
k) = e2itλkb∗k , k = 1, . . . , L

Proof.

d

dt
τt(bk) = −iτt([bk ,H])

= −2i
∑
j

λjτt([bk , b
∗
`b`])

= −2iλkτt([bk , b
∗
kbk ]) = −2iλkτt(bk)

Also: τ0(bk) = bk . Unique solution: τt(bk) = e−2itλkbk



Solution (cont.):

(i) b = Uc
(ii) Lemma: τt(b) = e−2itΛb
(iii) UMUt = Λ =⇒ e−iMt = Ute−itΛU

Thus:

τt(c) = e itHce−itH

= e itHUtbe−itH

= Ute itHbe−itH

= Ute−2itΛb

= Ute−2itΛUc

= e−2iMtc q.e.d.



Particle number conservation and second quantization:

Isotropic XY preserves number of down spins: H leaves

H(N)
L := span{eα :

∑
αj = N}

invariant for all N = 0, . . . , L. Let HN := H|H(N)
L

.

H =
L⊕

N=0

HN



Second Quantization:

In fact:

H0 = E0 on span{| ↑↑ . . . ↑↑〉} (vacuum)

H1
∼= 2M + E0 on CL

HN
∼= 2M∧N + E0 on

∧N(CL)

Thus
H = 2c∗Mc + E0

∼= 2dΓa(M) + E0,

where dΓa(M) is the restriction of the 2nd quantization of M on
the antisymmetric Fock space

Fa(CL) ∼= C2L .



Part 2:

MBL Properties of the Disordered XY Chain

Survey of some of the results from:

Hamza/Sims/St. 2012
Klein/Perez 1992, Sims/Warzel 2016
Pastur-Slavin 2014, Abdul-Rahman/St. 2015
Abdul-Rahman/Nachtergaele/Sims/St. 2016 (Survey 2017)



XY Chain in Random Field:

H = −
L−1∑
j=1

(σXj σ
X
j+1 + σYj σ

Y
j+1)−

L∑
j=1

ωjσ
Z
j on HL =

⊕L
j=1 C2

j

Assume: (ωj)
∞
j=1 i.i.d. random variables, with distribution

dµ(ωj) = ρ(ωj) dωj , where ρ is bounded and compactly supported.

Effective Hamiltonian:

M =


ω1 −1

−1
. . .

. . .
. . .

. . . −1
−1 ωL

 1D Anderson Model!



Known strong form of Anderson Localization:

Eigencorrelator Localization:

E

(
sup
|g |≤1

|(g(M))jk |

)
≤ Ce−µ|j−k|

uniformly in L. (e.g. Aizenman-Warzel book)

In particular: Dynamical Localization:

E
(

sup
t∈R
|(e−itM)jk |

)
≤ Ce−µ|j−k|

This implies various forms of MBL-type properties for the XY
chain:



Zero-velocity Lieb-Robinson bound

A,B ∈ C2×2

Aj = I ⊗ . . .⊗ A⊗ . . .⊗ I (in j-th position), Bk = . . .
τt(Aj) = e itHAje

−itH

Theorem 1 (Hamza/Sims/St. 2012)
There exist C <∞ and µ > 0 such that

E
(

sup
t∈R
‖[τt(Aj),Bk ]‖

)
≤ C‖A‖‖B‖e−µ|j−k|

for all L, 1 ≤ j , k ≤ L, A,B ∈ C2×2.

Note: Requires averaging over disorder E(·).



Compare: Lieb-Robinson 1972 (and others more recently):

For a quite general class of quantum spin systems (with bounded
coefficients and bounded interaction range) it holds that

‖[τt(Aj),Bk ]‖ ≤ C‖A‖‖B‖e−µ(|j−k|−v |t|)

v <∞ group velocity

Deterministic result!

The Proof of Theorem 1 requires little more than the result of
Exercise 1 above and summing up two geometric series, see
Hamza/Sims/St. 2012.



Exponential Decay of Correlations (“Exponential Clustering”):

Theorem 2 (Sims/Warzel 2016)
There exist C <∞ and µ > 0 such that

E

(
sup
ψ,t
|〈ψ, τt(Aj)Bkψ〉 − 〈ψ,Ajψ〉〈ψ,Bkψ〉|

)
≤ C‖A‖‖B‖e−µ|j−k|

for all L, 1 ≤ j , k ≤ L, and all A,B ∈ C2×2.
Here the supremum is taken over all normalized eigenfunctions ψ
of H and all t ∈ R.

Notes: (i) Same for thermal states ρβ = e−βH/Tre−βH , with
expectations defined as 〈A〉ρβ = TrρβA.
(ii) Earlier related work (ground state): Klein/Perez 1992



Area Law for the Entanglement Entropy:

Bipartite decomposition:

HL = HA ⊗HB , HA =
⊗̀
j=1

C2
j , HB =

L⊗
j=`+1

C2
j

ψ normalized eigenstate of H, ρψ = |ψ〉〈ψ|, reduced state:

ρAψ = TrB ρψ

Bipartite entanglement entropy:

E(ρψ) := S(ρAψ) := −Tr ρAψ log ρAψ



Uniform Area Law:

Theorem 3: (Abdul-Rahman/St. 2015)
There exists C <∞ such that

E

(
sup
ψ
E(ρψ)

)
≤ C

for all L and all 1 ≤ ` < L. Here the supremum is taken over all
normalized eigenstates ψ of H.

Notes: (i) Method due to Pastur/Slavin 2014, who proved the
area law for the ground state of a disordered d-dimensional
quasi-free Fermion system.
(ii) No logarithmic correction in `.
(iii) Open problem: Analogue for thermal states? (Problem: E is
not a good entanglement measure for mixed states.



Entanglement Dynamics:
Let

I HA, HB restrictions of H to A and B

I ψA, ψB normalized eigenstates of HA, HB , ρA = |ψA〉〈ψA|,
ρB = |ψB〉〈ψB |

I ρ = ρA ⊗ ρB (i.e. E(ρ) = 0)

I ρt = e−itHρe itH Schrödinger dynamics (“quantum quench”)

Theorem 4: (Abdul-Rahman/Nachtergaele/Sims/St. 2016)
There exists C <∞ such that

E

(
sup

t,ψA,ψB

E(ρt)

)
≤ C

for all ` and L.



Main tool in proofs of Theorems 2 to 4:

Quasifree States and their Correlation Matrices

Fact: Eigenstates ρ = ρα, α ∈ {0, 1}L, and thermal states ρ = ρβ,
0 < β <∞, of a quasifree Fermion system c∗Mc are quasifree (i.e.
expectations of arbitrary products of the cj and c∗j can be
calculated by Wick’s Rule.

Also: The reduced state ρA of a quasifree state ρ is again
quasifree.

Thus ρ is uniquely determined by its correlation matrix

Γρ = (〈cjc∗k 〉ρ)Lj ,k=1

and ρA by the restricted correlation matrix

ΓA
ρ = (〈cjc∗k 〉ρ)`j ,k=1



In particular, the proof of Theorem 2 is based on
(Vidal/Latorre/Rico/Kitaev 2003):

S(ρ) = −Tr ρ log ρ = tr h(Γρ)

where h(x) = −x log x − (1− x) log(1− x). Same for S(ρA).

If σ(M) = {λj : j = 1, . . . , L} is simple, then Γρα = χ∆α(M),
where

∆α := {λj : αj = 0}

The proof of Theorem 2 uses that, by Anderson localization of M,

E
(

sup
α
|(χ∆α(M))jk |

)
≤ Ce−µ|j−k|

See Pastur/Slavin 2014 and Abdul-Rahman/St. 2015 for more
details.



Exercise 2: Correlation matrix of a free Fermion system

Show that Γρα = χ∆α(M) if σ(M) is simple.

Recall:
UMUt = diag (λj)

b = Uc

Γρα(j , k) = 〈ψα, cjc∗kψα〉

ψα = (b∗1)α1 . . . (b∗L)αLΩ



Solution to Exercise 2:

Step 1:

〈ψα, bjb∗kψα〉 = 〈b∗j ψα, b∗kψα〉

=

{
0, if j 6= k or αj = 1 or αk = 1,
1, if j = k and αj = 0.

Step 2: ONB fj with Mfj = λj fj , thus fj(k) = U(j , k).

cj =
∑
`

f`(j)b`, c∗k =
∑
r

fr (k)b∗r



Thus

Γρα(j , k) = 〈ψα, cjc∗kψα〉

=
∑
`,r

f`(j)f`(k)〈ψα, b`b∗r ψα〉

=
∑
`

f`(j)f`(k)〈ψα, b`b∗`ψα〉

=
∑
`:α`=0

f`(j)f`(k)

=
∑
`:α`=0

〈δj , f`〉〈f`, δk〉

= 〈δj , χ∆α(M)δk〉 (simplicity)



Without providing details we mention that most of the above can
be extended to the anisotropic XY chain in random field:

Hγ = −
L−1∑
j=1

((1 + γ)σXj σ
X
j+1 + (1− γ)σYj σ

Y
j+1)−

L∑
j=1

ωjσ
Z
j

= C∗M̃C + E0I

Here C = (c1, . . . , cL, c
∗
1 , . . . , c

∗
L)t , C∗ = (c∗1 , . . . , c

∗
L , c1, . . . , cL),

Block Anderson model: M̃ =

(
A B
−B −A

)

A =


ω1 −1

−1
. . .

. . .
. . .

. . . −1
−1 ωL

 , B =


0 −γ

γ
. . .

. . .
. . .

. . . −γ
γ 0





To reduce this to a free Fermion system one needs

General Bogolubov transformations (with mixing of
creation/annihilation operators, not conserving the vaccum):

W ∈ C2L×2L is called a Bogolubov matrix if

W unitary and WJW t = J, where J =

(
0 I
I 0

)

If C satisfies CAR, then

B = W C satisfies CAR ⇐⇒ W Bogolubov

More details on anisotropic XY: See Hamza/Sims/St. 2012,
Abdul-Rahman/St. 2015



Part 3:

Droplets in the Infinite XXZ Chain

Based on:
Starr 2001
Nachtergaele/Starr 2001
Nachtergaele/Spitzer/Starr 2007
Fischbacher 2013
Fischbacher/St. 2014



Infinite spin configurations:

H = HZ Hilbert space with (formal) ONB

B := {eα =
⊗
j∈Z

eαj : α ∈ {0, 1}Z,
∑
j

αj <∞}

Infinite spin configurations with finitely many down-spins
(particles), for example

eα = | . . . ↑↑↑↓↓↑↓↓↑↑↑ . . .〉

Recall: e0 =

(
1
0

)
= | ↑〉, e1 =

(
0
1

)
= | ↓〉



The infinite free XXZ chain:

H = HZ =
∑
i∈Z

hi ,i+1

hi ,i+1 =
1

4
(I − σZi σZi+1)− 1

4∆
(σXi σ

X
i+1 + σYi σ

Y
i+1)

=
1

2
(a∗i ai + a∗i+1ai+1)− 1

2∆
(a∗i ai+1 + a∗i+1ai )− a∗i aia

∗
i+1ai+1

Note: eα ∈ B =⇒ hi ,i+1eα 6= 0 for only finitely many i . H maps
spanB to spanB.
In fact: H is essentially self-adjoint and unbounded on spanB.
Write: H = H|spanB .
Choose ∆ > 0 (ferromagnetic), non-degenerate ground state:

H| . . . ↑↑↑↑ . . .〉 = 0



Particle number preservation:

H(N) := span {eα :
∑
j

αj = N}

is invariant under H for all N = 0, 1, 2, . . .. Thus H =
⊕∞

N=0 HN

for the bounded self-adjoint operators HN = H|H(N) .

More precisely: Consider Fermionic N-particle configurations:

XN := {x ∈ ZN : x1 < x2 < . . . < xN}

Identify
eα ∼= δx =: φx ,

the standard basis vector in `2(XN) such that
{x1, . . . , xN} = {j : αj = 1} (positions of down-spins in eα).



Explicit calculation: (Possible Exercise: Do this calculation!)
H0 = 0 on | . . . ↑↑↑↑ . . .〉 and

HN = H|H(N)
∼= −

1

2∆
h

(XN)
0 + W + N, N ≥ 1

Here h
(XN)
0 is the adjacency operator on `2(XN):

(h
(XN)
0 f )(x) =

∑
y∈XN ,‖x−y‖1=1

f (y)

and W the attractive next-neighbor interaction potential

W (x1, . . . , xN) = −#{j : xj+1 = xj + 1} = −
∑

1≤k<`≤N
Q(|xk − x`|)

with Q(1) = 1, Q(r) = 0 for r 6= 1.



x2

x1

1

2

2

2

2

2

1

2

2

2

2

1

2

2

2

1

2

2

1

2 1

OO

//

Figure: H2 = − 1
2∆h

(X2)
0 + W + 2



I HN is a bounded s.a. operator on `2(XN), ‖HN‖ ∼ N. May
use H :=

⊕
N HN to define infinite XXZ chain.

I XXZ chain is mapped to an interacting infinite Fermion
system!

I The infinite XXZ chain is exactly solvable by the Bethe ansatz
(Babbitt/Thomas/Gutkin 70’s to 90’s,
Borodin/Corwin/Petrov/Sasamoto 2015)

I From now on assume

∆ > 1 (Ising phase of XXZ)

In this case we don’t need the full Bethe ansatz (and its
completeness) to understand the low energy spectrum.



Floquet-Bloch analysis of HN :

HN is invariant under translation of the “center of mass”:

TN(x1, . . . , xN) = (x1 + 1, . . . , xN + 1) on XN

In particular, HN is purely absolutely continuous.

See Figure for N = 2.

If ∆ sufficiently large: Expect surface spectrum with generalized
eigenfunctions concentrated along the “edge”

XN,1 := {(x1, x1 + 1, . . . , x1 + N − 1) : x1 ∈ Z}



Explicit results for N = 2:

H2 =

∫ ⊕
[−π,π)

H2(ϑ) dϑ

H2(ϑ) =


1 −1+e iϑ

2∆

−1+e−iϑ

2∆ 2 −1+e iϑ

2∆

−1+e−iϑ

2∆ 2
. . .

. . .
. . .


∆ > 1: Each H2(ϑ) has a single eigenvalue E2(ϑ) = 1− 1+cosϑ

2∆2

below σess(H2(ϑ)).

σ(H2) =

[
1− 1

∆2
, 1

]
∪
[

2− 2

∆
, 2 +

2

∆

]
= surface spectrum ∪ bulk spectrum



∆ > 1: There exists surface spectrum below bulk spectrum.

∆ > 2: Gap between surface and bulk spectrum.

Generalized eigenfunctions for surface spectrum:

fϑ(x1, x2) = e−iϑx1

(
1 + e iϑ

2∆

)x2−x1

Thus: fϑ quasi-periodic along surface, exponentially decaying in
bulk for ∆ > 1.

Possible Exercise: Verify these formulas!



Figure:



I Surface spectral bands δN contract monotonically to

δ∞ = {
√

1− 1
∆2 }

I

σ(H) =
∞⋃

N=0

σ(HN) = {0} ∪ [1− 1

∆
, 1 +

1

∆
] ∪ S

where S ⊂ [2− 2
∆ ,∞).

I The “droplet bands” δN ⊂ [1− 1
∆ , 1 + 1

∆ ] have generalized
eigenfunctions which are concentrated on the edge XN,1 (with
exponential decay in all bulk directions), corresponding to
states which form a single droplet of downspins in a sea of
upspins, i.e., linear combinations of

. . . ↑↑↑↓↓↓↓↓↑↑↑ . . .



I Note that XN,1 is “one-dimensional” within XN for all N, also
in the graph theoretical sense: (x1, x2, . . . , xN−1, xN) ∈ XN,1

has only two next neighbors in XN :

(x1 − 1, x2, . . . , xN−1, xN) and (x1, x2, . . . , xN−1, xN + 1)

I Expect: Adding disorder will localize the surface spectrum
(compare: Jaksic/Last/Molchanov/Pastur ∼ 2000, and many
others).
Physically: Droplet can be viewed as a single quasi-particle
which will get localized within the edge XN,1.

I Will this happen uniformly in N? Can the result be
interpreted as MBL?



Part 4:

Localization of the Droplet Spectrum
in the Disordered XXZ Chain

Based on recent results of:

Beaud/Warzel 2017, Elgart/Klein/St. 2017



XXZ chain in random field:

H(ω) = HZ(ω) =
∑
i∈Z

hi ,i+1 + λ
∑
i

ωiNi

hi ,i+1 =
1

4
(I − σZi σZi+1)− 1

4∆
(σXi σ

X
i+1 + σYi σ

Y
i+1), Ni =

(
0 0
0 1

)
i

Assume:
ω = (ωi )i∈Z i.i.d., dµ(ωi ) = ρ(ωi ) dωi

ρ bounded, supp ρ = [0, ωmax ]

Disorder strength: λ > 0, Ising phase: ∆ > 1

Note: (i) λ
∑

i ωiNi ≥ 0, (ii) | . . . ↑↑↑↑ . . .〉 remains ground state,
E0 = 0.



H(ω) particle number preserving, ergodic under shift, σ(Hω) = Σ
almost surely. In fact:

σ(Hω) = {0} ∪
[

1− 1

∆
,∞
)

a.s.

Expect “localization” in droplet spectrum

I1 =

[
1− 1

∆
, 2− 2

∆

)



Finite volume chain on H(L) =
⊗L

i=−L C2
i :

H(L)(ω) =
L−1∑
i=−L

hi ,i+1 + λ

L∑
i=−L

ωiNi + β(N−L +NL)

Assume: β ≥ 1
2 (1− 1

∆ ) (“droplet b.c.”, Nachtergaele/Starr)

Particle number conservation: H(L)(ω) ∼=
⊕∞

N=0 H
(L)
N (ω)

H
(L)
N (ω) = − 1

2∆
h

(X (L)
N )

0 + W + N + λVω +
(
β − 1

2

)
χ(L)

on `2(X (L)
N ), where X (L)

N = {x ∈ XN : −L ≤ x1 < . . . < xN ≤ L},

Vω(x) =
N∑
j=1

ωxj N-body Anderson random potential,

χ(L) = χ−L + χL (indicator functions of x1 = −L and xN = L)



A better way of writing H
(L)
N (ω):

(1) Replace W (x) = −#{j : xj+1 = xj + 1} by

W̃ (x) = #{j : xj+1 > xj+1} = W (x)+N = number of clusters in x

(2) Replace adjacency operator h
(X (L)

N )
0 by graph Laplacian:

(L(L)
N ψ)(x) =

∑
y∈X (L)

N , ‖x−y‖1=1

(ψ(y)− ψ(x)), ψ ∈ `2(X (L)
N )

Note: h
(X (L)

N
0 = L(L)

N + 2W̃ − χ(L). Thus (1) and (2) imply

H
(L)
N (ω) = − 1

2∆
h

(X (L)
N )

0 + W + N + λVω +
(
β − 1

2

)
χ(L)

= − 1

2∆
L(L)
N +

(
1− 1

∆

)
W̃ + λVω +

(
β − 1

2
(1− 1

∆
)
)
χ(L)

≥ 0 + 0 + 0 + 0



Simplicity of the spectrum:

Lemma: (Abdul-Rahman/St. 2015) Almost surely, all eigenvalues
of H(L) = H(L)(ω) are simple. (Exercise: This holds for any s.a.
operator A +

∑L
i=−L ωiNi on

⊕L
j=−LC2

j if the ωi have a.c.
distribution. )

Thus: May label eigenfunctions of H(L) by ψE , E ∈ σ(HL).

Definitions: (i) An observable X ∈ B(H(L)) is supported on
J ⊂ {−L, . . . , L} if X ∈ B(⊗i∈JC2

i ) acts trivially on all other spins.
We write J = supp(X ).
(ii) The correlation of ψ w.r.t. observables X and Y is

RX ,Y (ψ) := |〈ψ,XYψ〉 − 〈ψ,Xψ〉〈ψ,Yψ〉|.

(iii) Fix δ > 0 (arbitrarily small) and let

I1,δ =

[
1− 1

∆
, (2− δ)

(
1− 1

∆

)]



Theorem 5 (Elgart/Klein/St. 2017)

If λ
√

∆− 1 is “sufficiently large”, then there exist C <∞ and
m > 0 such that

E

 ∑
E∈σ(H(L))∩I1,δ

RX ,Y (ψ)

 ≤ C‖X‖‖Y ‖e−mdist(supp(X ),supp(Y ))

uniformly in L, for all observables X , Y such that
max supp(X ) < min supp(Y ), or vice versa.

Remarks: (1) λ
√

∆− 1 sufficiently large means more precisely:
There exists K > 0 (depending on δ and the distribution µ) such
that for all ∆ > 1 and λ > 0 with

λ
√

∆− 1 min{1,∆− 1} ≥ K

it holds that . . . .



(2) No dependence on sizes of supp(X ) and supp(Y).

(3) Can take sum over all correlations in droplet spectrum.

(3) Result extends to dynamical correlation: For an interval I ⊂ R
let H

(L)
I = PIH

(L) and τ It (X ) = e itH
(L)
I Xe−itH

(L)
I . Then

E

sup
t∈R

∑
E∈σ(H(L))∩I1,δ

R
τ
I1,δ
t (X ),Y

(ψ)

 ≤ . . .



About the proof of Theorem 5:

Special case: X = Ni =

(
0 0
0 1

)
i

, Y = Nj =

(
0 0
0 1

)
j

RNi ,Nj
(ψE ) = |〈ψE ,Ni (I − |ψE 〉〈ψE |)NjψE 〉|

≤ ‖NiψE‖‖NjψE‖

Theorem 6 (Localization of MB eigenfunction correlators):

Under the above assumptions it holds that

E

 ∑
E∈σ(H(L))∩I1,δ

‖NiψE‖‖NjψE‖

 ≤ Ce−m|i−j |

for all −L ≤ i , j ≤ L, uniformly in L.



Fact: Theorem 6 is not just a special case of Theorem 5, but it
can be shown to imply Theorem 5 for general local observables,
including its generalization to dynamical correlations.

Can a bit more about the proof of this be said? At least for the
case where both local observables are supported at only one site?

Had prepared to sketch proof on blackboard, but ran out of time.
Contact me for details or see Section 3 in Elgart/Klein/St. 2017.



Reduction of Theorem 6 to N-body eigenfunction correlators:

Restriction of Ni to N-particle sector (L fixed):

Qi ,N = Ni |`2(X (L)
N )

= indicator function of S
(L)
i ,N ,

where

S
(L)
i ,N = {x ∈ X (L)

N : xj = i for some j ∈ {1, . . . ,N}}

i.e., all lattice sites where random potential depends on ωi .



Almost surely: Each ψE is non-degenerate and lies in a fixed
N-particle sector. Thus

‖NiψE‖‖NjψE‖ = ‖Qi ,NψE‖‖Qj ,NψE‖ = ‖Qi ,NPEQj ,N‖1

Here PE is the spectral projection of H
(L)
N onto E , and ‖ · ‖1 the

trace norm.

Thus, for any interval I ⊂ R,

∑
E∈σ(H(L))∩I

‖NiψE‖‖Njψ‖ =
∞∑

N=1

Q
(L)
N (i , j ; I )

with the N-body eigenfunction correlators

Q
(L)
N (i , j ; I ) :=

∑
E∈σ(H

(L)
N )∩I

‖Qi ,NPEQj ,N‖1



Thus Theorem 6 is equivalent to

∞∑
N=1

E
(
Q

(L)
N (i , j ; I1,δ)

)
≤ Ce−m|i−j | (1)

uniformly in L.

Remark: If one defines

Q̂
(L)
N (i , j ; I ) := sup

{∥∥∥Qi ,Ng(H
(L)
N )Qj ,N

∥∥∥
1

: supp g ⊂ I , |g | ≤ 1
}

then Q̂
(L)
N (i , j ; I ) ≤ Q

(L)
N (i , j ; I ), with equality for N = 1 (where

Qi ,N is rank one), but not for N ≥ 2. This and Theorem 6 imply
with standard arguments that, almost surely, the infinite volume
disordered XXZ chain H(ω) has pure point spectrum in I1,δ.



Bounding the N-body eigenfunction correlators:

Instead of a proof we make a series of remarks (some of them
involving dry bones with little flesh):

Remark 1: We have reduced a result on many-body localization to
a result on Anderson localization for an infinite system of N-body
random Schrödinger operators. The challenge is that the latter has
to be shown with bounds uniform in N (in fact, summable in N).

Remark 2: Bounds on the N-body eigenfunction correlators Q
(L)
N

are proven by (relatively traditional) Green’s function methods.
Getting the eigencorrelator bounds from Green’s function bounds:
See one (or both) of the preprints, which essentially follow known
methods from Anderson localization theory. If one can prove the
Green’s function bounds uniform in N, this can be carried over to
uniform eigencorrelator bounds.



Remark 3: Once one has uniformity in N, then summability in N
in (1) is essentially due to a large deviations bound:

Vω(x) = ωx1 + ωx2 + . . .+ ωxN

Thus
P(Vω < 1) ≤ Ce−cN

Thus the appearance of droplet spectrum in the random XXZ
chain is due to rare events: The sample size needs to be much
larger than N. Approximately: In a sample of size L, the largest
droplet is of size log L. For “full” MBL this should grow linear in L.

This is physically not (yet) satisfying! (We have only scratched the
surface.)



We discuss the Green’s function bounds in infinite volume, so we
can drop the extra index L. All results also hold in finite volume,
with bounds uniform in L.

Remark 4: The Green’s function bounds are proven separately for
the edge XN,1 and for the bulk XN,1 = XN \ XN,1. These bounds
are then related by Schur complementation with respect to

`2(XN,1)⊕ `2(XN,1)

Schur complementation is also used to analyze the Green’s
function along the edge.



Remark 5: The bulk Green’s function is controlled by a
Combes-Thomas bound:

Theorem 7 (Combes-Thomas bound)
Let ∆ > 1 and λ > 0 and let HN,1 denote the restriction of HN to
`2(XN,1). Then there exist constants C = C (∆) <∞ and
η = η(∆) > 0, independent of λ and N, such that

‖χA(HN,1 − E − iε)−1χB‖ ≤ Ce−η dist1(A,B),

for all N ∈ N, E ∈ I1,δ, ε ∈ R, and subsets A and B of XN,1.

Here dist1(A,B) = infx∈A,y∈B
∑

j |xj − yj | is the 1-distance of A
and B and χA, χB are indicator functions of A and B.



Recall: HN = − 1
2∆LN + (1− 1

∆ )W̃ + λVω, where

W̃ (x) = number of clusters in (x1, . . . , xN)

Thus: W̃ ≥ 2 on XN,1 and HN,1 ≥ 2(1− 1
∆ ), i.e., above the

droplet spectrum I1,δ.
This is the classical situation where Combes-Thomas bounds for
Schrödinger operators apply. However, the standard proof yields a
dimension dependent decay rate η/N.

Key in proof of an N-independent bound:

‖W̃ 1/2(HN,1 − E − iε)−1W̃ 1/2‖ ≤ C (δ,∆)

uniformly in E ∈ I1,δ, ε ∈ R and N ∈ N.



Remark 6: The edge Green’s function is controlled by a fractional
moment analysis:

Theorem 8: (Fractional moment bound on the edge)
If the parameters λ and ∆ are in the region described in
Theorem 5 (essentially: λ

√
∆− 1 sufficiently large), then there

exist C = C (∆) and ξ = ξ(∆) such that

E
(∣∣〈δu, (HN − E − iε)−1δv 〉

∣∣1/2
)
≤ C√

λ
e−ξ‖u−v‖,

for all N ∈ N, E ∈ I1,δ, ε > 0, and u, v ∈ XN,1.

Here ‖u − v‖ = max{|ui − vi | : 1 ≤ i ≤ N} is the ∞-distance.



Remark 7: Note the difference between the 1-distance and the
∞-distance. One can’t get a good (i.e. N-independent) “global”
Green’s function bound. The latter would essentially have to use
the ∞-distance, which is much worse than the 1-distance for large
N.
Instead, one works with a combination of Theorems 7 and 8 in
getting the eigencorrelator bounds from the Green’s function
bounds.


