Topics in Random Operator Theory

Simone Warzel
Zentrum Mathematik

TECHNISCHE UNIVERSITAT MUNCHEN

Copenhagen, Master Class, May 16, 2017

Many-body localization (MBL)

Physics phenomenon: disordered quantum systems may exhibit phases in which the equidistribution postulate is violated, i.e.
'typical stationary states are spread uniformly over the energy shell'

Prototype: Non-interacting quantum particle in a random potential
Anderson Localization

Challenge:
Definition, existence \& description of many-body localization for interacting systems.

Plan

Part I Localization for non-interacting particles in a nutshell

- The phase diagram

■ Useful quantities

- Proof of localization at high disorder

Part II Tiny steps towards understanding MBL
■ Short overview over the mathematical literature

- Sketch of localization proof for 2 interacting particles

■ Localization of a droplet in the XXZ spin chain
■ Some simple consequences

Part I: Localization for non-interacting particles in a nutshell

Anderson model:

Single quantum particle in random potential on \mathbb{G} :

$$
H=T+\lambda V, \quad \text { in } \quad \ell^{2}(\mathbb{G})
$$

- $(T \psi)(x):=\sum_{y: d(x, y)=1} \psi(y)$
- $\{V(x)\}_{x \in \mathbb{G}}$ iid random variables.
$\mathbb{P}(V(x) \in d v)=\varrho(v) d v, \varrho \in L^{\infty}$.
- Disorder strength: $\quad \lambda>0$.

Expected phase diagram for $\mathbb{G}=\mathbb{Z}^{d}$:

Consequence of ergodicity:
There are $\Sigma^{\#} \subset \mathbb{R}$ such that almost surely

$$
\sigma_{\#}(H)=\Sigma^{\#}, \quad \#=\cdot, \mathrm{ac}, \mathrm{pp}, \mathrm{sc}
$$

Dimensions $\mathbf{d}=\mathbf{1}$ or $\mathbf{d}=\mathbf{2}: \quad$ For any $\lambda>0: \quad \Sigma^{\text {sc }}=\Sigma^{\text {ac }}=\emptyset$
Dimension $\mathbf{d} \geq \mathbf{3}$:
e.g. $\quad \varrho(v)=1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(v)$

Quantities capturing the transition

1 Resolvent and Green function at $z \in \mathbb{C} \backslash \sigma(H)$

$$
G(x, y ; z)=\left\langle\delta_{x},(H-z)^{-1} \delta_{y}\right\rangle=\int(E-z)^{-1} \mu_{x, y}(d E)
$$

2 Eigenfunction correlator aka total variation of spectral measure

$$
Q(x, y ; I)=\left|\mu_{x, y}\right|(I)=\sum_{E \in \sigma(H) \cap I}\left|\psi_{E}(x)\right|\left|\psi_{E}(y)\right|
$$

where the last equality requires simple spectrum.

Some relations

- Transport: $\quad \sup _{t \in \mathbb{R}}\left|\left\langle\delta_{x}, e^{-i t H} P_{l}(H) \delta_{y}\right\rangle\right| \leq Q(x, y ; l)$

Spectral information then available through the RAGE theorem.

- For $|\mathbb{G}|<\infty: \quad Q(x, y ; I)=\lim _{s \uparrow 1} \frac{1-s}{2} \int_{I}|G(x, y ; E)|^{s} d E$

Anderson's argument for localization at high disorder

Iterating the resolvent equation: $\quad \frac{1}{H-z}=\frac{1}{\lambda V-z}-\frac{1}{\lambda V-z} T \frac{1}{H-z}$ leads for $\operatorname{Im} z>\|T\|$ to a convergent path expansion:

$$
\begin{aligned}
G(x, y ; z)=\sum_{\gamma: x \mapsto y} & (-1)^{|\gamma|} T(\gamma(0), \gamma(1)) T(\gamma(1), \gamma(2)) \\
& \cdots T(\gamma(|\gamma|-1), \gamma(|\gamma|)) \prod_{k=0}^{|\gamma|} \frac{1}{V(\gamma(k))-z}
\end{aligned}
$$

Intuition: The $x \in \mathbb{G}$ for which $|\lambda V(x)-z| \geq \operatorname{deg}_{\mathbb{G}}$ are spatially rare. Hence most paths collect an exponential decay.

Proof of localization at high disorder

Problem: For $z \in \lambda$ supp ϱ exceptional $x \in \mathbb{G}$ exist for which arbitrarily large amplification occurs in this expansion exists. Their contribution is however suppressed probabilstically, i.e., for any $t>0$:

$$
\sup _{\alpha \in \mathbb{C}} \mathbb{P}\left(\frac{1}{|\lambda V(x)-\alpha|}>t\right) \leq \frac{2\|\varrho\|_{\infty}}{t \lambda} .
$$

Hence, for any $s \in(0,1)$: $\quad \sup _{\alpha \in \mathbb{C}} \int \frac{\varrho(v) d v}{|\lambda v-\alpha|^{s}} \leq \frac{\left(2\|\varrho\|_{\infty}\right)^{s}}{(1-s) \lambda^{s}}=: \frac{C_{s}}{\lambda^{s}}<\infty$.

Technique:

(cf. Anderson '58)
Feenberg expansion, i.e., loop-erased version: (wlog $x \neq y$)

$$
\begin{aligned}
G(x, y ; z)= & \sum_{\hat{\gamma}: x \mapsto y}^{(S A W)}(-1)^{|\hat{\gamma}|} T(\hat{\gamma}(0), \hat{\gamma}(1)) T(\hat{\gamma}(1), \hat{\gamma}(2)) \\
& \cdots T(\hat{\gamma}(|\hat{\gamma}|-1), \hat{\gamma}(|\hat{\gamma}|)) \prod_{k=0}^{|\hat{\gamma}|}\left\langle\delta_{\hat{\gamma}(k)}, \frac{1}{H_{\{\hat{\gamma}, k\}^{c}-z}}, \delta_{\hat{\gamma}(k)\rangle}\right\rangle, \\
= & -G(x, x ; z) \sum_{v: d(x, v)=1} T(x, v) G_{\{x\} c}(v, y ; z) .
\end{aligned}
$$

where G_{B} is the Green function restricted to $B \subset \mathbb{G}$.

Proof of localization at high disorder

$$
G(x, y ; z)=-G(x, x ; z) \sum_{v: d(x, v)=1} T(x, v) G_{\{x\}^{c}}(v, y ; z) .
$$

Taking $s \in(0,1)$ moments and (conditional) expectation values:

$$
\begin{aligned}
\mathbb{E}\left[|G(x, y ; z)|^{s}\right] & \leq \sum_{v: d(x, v)=1} \mathbb{E}\left[|G(x, x ; z)|^{s}\left|G^{(x)}(v, y ; z)\right|^{s}\right] \\
& =\sum_{v: d(x, v)=1} \mathbb{E}\left[\mathbb{E}_{x}\left[|G(x, x ; z)|^{s}\right]\left|G^{(x)}(v, y ; z)\right|^{s}\right] \\
& \leq \frac{C_{s}}{\lambda^{s}} \sum_{v: d(x, v)=1} \mathbb{E}\left[\left|G^{(x)}(v, y ; z)\right|^{s}\right]
\end{aligned}
$$

Use Feshbach-Krein-Schur formula, i.e. $\quad G(x, x ; z)=(\lambda V(x)-\alpha(z))^{-1} \quad$ with some $\alpha(z) \in \mathbb{C}$.
Under the condition $e^{-\mu_{s}}:=\operatorname{deg}_{\mathbb{G}} \frac{C_{s}}{\lambda^{s}}<1$, iteration yields:

$$
\mathbb{E}\left[|G(x, y ; z)|^{s}\right] \leq \frac{C_{s}}{\lambda^{s}} e^{-\mu_{s} d(x, y)}
$$

Recall: Feshbach-Krein-Schur formula

Theorem

Let H be a self-adjoint operator in some Hilbert space \mathcal{H} and let P be an orthogonal projection onto a closed subspace on which we define

$$
K(z):=P(H-z)^{-1} P, \quad z \in \mathbb{C} \backslash \mathbb{R} .
$$

Then for any $z \in \mathbb{C} \backslash \mathbb{R}$ and any bounded self-adjoint operator of the form $A=P A P$,

- the operator $1+A K(z)$ is invertible on $P \mathcal{H}$,
- on PH one has the identity

$$
(H+A-z)^{-1} P=(H-z)^{-1} P[1+A K(z)]_{P}^{-1} P \text {. }
$$

Exercise: Prove this (for matrices) and apply it to the case $P=\left|\delta_{x}\right\rangle\left\langle\delta_{x}\right|$!

Localization at high disorder

Theorem

If $\lambda>\left(C_{s} \operatorname{deg}_{G}\right)^{1 / s}$ for some $s \in(0,1)$, then there is $\mu \in(0, \infty)$ such that for any bounded Borel $I \subset \mathbb{R}$ and all $x, y \in \mathbb{G}$:

$$
\mathbb{E}[Q(x, y ; l)] \leq A_{l} e^{-\mu d(x, y)}
$$

at some $A_{l}<\infty$.

- For $d=1$ proven by Kunz/Souillard ' 82
- For arbitrary d proven by Aizenman '94
- Other trailblazing works on Anderson localization:

Goldsheid/Molchanov/Pastur '73 $\quad(d=1)$
Fröhlich/Spencer '83 (Multiscale Analysis $d \geq 1$)
Aizenman/Molchanov '92 (Fractional Moments $d \geq 1$)

More information

Part II: Steps towards understanding MBL

Proposal by Basko/Aleiner/Altshuler '06:
Starting from a non-interacting system of n particles on $\Lambda \subset \mathbb{Z}^{d}$ in the completely localized phase, turning on weak interactions amounts to an effective sparse hopping on the graph of particle configurations

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Lambda^{n}
$$

Essentially the same argument as in the one-particle case, is proposed to lead to exponential decay of the many-particle Green function $G_{\Lambda}^{(n)}(\mathbf{x}, \mathbf{y}, z)$.

Problem:

Control of resonant spots \mathbf{x} is much more complicated due much less randomness in configuration space!

Some selected mathematical efforts

1 Systems of a fixed but arbitrary number of particles:
■ Aizenman/W. '09, Chulaevsky/Suhov '09-'14

- Droplet spectrum of the XXZ spin chain

$$
\begin{array}{rr}
\text { Beaud/W. } & \text { arXiv:1703.02465 } \\
\text { Elgart/Klein/Stolz } & \text { arXiv:1703.07483 }
\end{array}
$$

2 Localization in integrable models
■ for XY spin chain
Hamza/Sims/Stolz '08, Sims/W. 16, ... Abdul-Rahman/Nachtergaele/Sims/Stolz '16
■ for Tonks-Girarndeau gas
Seiringer/W. '16
3 Decay of correlations of all states in certain one-dimensional spin chain

4 Ground-state localisation of weakly interacting fermions
■ for Aubry-André potential
Mastropietro '16

- within the Hartee-Fock theory

Ducatez '16

Example: Localization for 2 hard-core particles on $\wedge \subset \mathbb{Z}$

Consider $\quad H=\sum_{j}(T+\lambda V)_{j}+U$ in $\ell^{2}\left(\chi^{2}\right) \quad$ e.g. with nn interaction U.
Configuration space: $\quad \chi^{2}:=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) \in \Lambda^{2} \mid x_{1}<x_{2}\right\}$

Clustered configurations: $\quad \mathcal{C}=\left\{\mathbf{x} \mid x_{2}=x_{1}+1\right\}$

Sketch of localization proof for $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ with $x_{1}<y_{1}$

Similarly to the one-particle case a 'last exit' resolvent expansion into $\Lambda_{\mathrm{x}}=\Lambda \cap\left[x_{1}+1, \infty\right)$ leads to:

$$
\begin{aligned}
&\left|G_{\wedge}(\mathbf{x}, \mathbf{y} ; z)\right| \leq\left|G_{\wedge}\left(\mathbf{x}, \mathbf{u}\left(\mathbf{v}_{0}\right) ; z\right)\right|\left|G_{\Lambda_{\mathbf{x}}}\left(\mathbf{v}_{0}, \mathbf{y} ; z\right)\right| \\
&+\sum_{\substack{\mathbf{v} \neq \mathcal{C} \\
v_{1}=x_{1}+1}}\left|G_{\wedge}(\mathbf{x}, \mathbf{u}(\mathbf{v}) ; z)\right|\left|G_{\Lambda_{\mathbf{x}}}(\mathbf{v}, \mathbf{y} ; z)\right|,
\end{aligned}
$$

where $\mathbf{v}_{0}=\left(x_{1}+1, x_{2}+1\right) \in \mathcal{C}$, and $\mathbf{u}(\mathbf{v})$ is the unique neighboring configuration of \mathbf{v} with particle outside $\Lambda_{\mathbf{x}}$.

- Use: $\quad \mathbb{E}_{\xi}\left[\left|G_{\Lambda}(\mathbf{x}, \mathbf{y} ; z)\right|^{s}\right] \leq \frac{C_{s}}{\lambda^{s}} \quad$ for any configuration with $\xi \in \mathbf{x}$ and $\xi \in \mathbf{y}$.
- Expand the second factor in terms of the Green function $G^{(2)}$ of the operator projected on non-clustered configurations:

$$
\left|G_{\Lambda_{\mathbf{x}}}(\mathbf{v}, \mathbf{y} ; z)\right| \leq \sum_{\substack{\mathbf{w} \in \mathcal{X}_{\mathbf{x}} \backslash \mathcal{C}_{\mathbf{X}} \\ \mathbf{z} \in \mathcal{C}_{\mathbf{x}}, d(\mathbf{w}, \mathbf{z})=1}}\left|G_{\Lambda_{\mathbf{x}}}^{(2)}(\mathbf{v}, \mathbf{w} ; z)\right|\left|G_{\Lambda_{\mathbf{x}}}(\mathbf{z}, \mathbf{y} ; z)\right|
$$

The proof may proceed supposing

$$
\left|G_{\Lambda_{\mathbf{x}}}^{(2)}(\mathbf{v}, \mathbf{w} ; z)\right| \leq C e^{-\mu_{T} d(\mathbf{v}, \mathbf{w})}
$$

to conclude by iteration for $\mathbf{x}, \mathbf{y} \in \mathcal{C}$:

$$
\mathbb{E}\left[\left|G_{\Lambda}(\mathbf{x}, \mathbf{y} ; z)\right|^{s}\right] \leq \frac{\widehat{C}_{s}}{\lambda^{s}} e^{-\mu_{s}\left|x_{1}-y_{1}\right|}
$$

Sketch of localization proof for $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ with $x_{1}<y_{1}$

Two cases for which

$$
\left|G_{\Lambda_{\mathbf{x}}}^{(2)}(\mathbf{v}, \mathbf{w} ; z)\right| \leq C e^{-\mu_{T} d(\mathbf{v}, \mathbf{w})}
$$

holds:
$1 G_{\Lambda_{\mathrm{x}}}^{(2)}$ is essentially non-interacting for which the above was already established at least in expectation.

Aizenman/W. '09, Chulaevsky/Suhov '09-'14
2 assume attractive interaction and the fact that $\operatorname{Re} z<E_{\text {Cluster Break-up }}$ such that the above follows by a Combes-Thomas bound.

Beaud/W. '17, Elgart/Klein/Stolz '17

XXZ spin chain in random field

$$
\text { Spins } \frac{1}{2} \text { on } \Lambda:=[1, L] \cap \mathbb{Z}: \quad \mathcal{H}_{\mathrm{L}}^{\mathrm{xxz}}=\bigotimes_{k=1}^{L} \mathbb{C}_{k}^{2}
$$

$$
\begin{aligned}
& H_{\mathrm{L}}^{\mathrm{xxz}}:=-\sum_{k=1}^{L-1}\left[\frac{1}{\Delta}\left(S_{k}^{x} \otimes S_{k+1}^{X}+S_{k}^{y} \otimes S_{k+1}^{y}\right)+\left(S_{k}^{z} \otimes S_{k+1}^{z}-\frac{1}{4} \mathbb{1}_{k} \otimes \mathbb{1}_{k+1}\right)\right] \\
&+\frac{1}{2}\left(\mathbb{1}-S_{1}^{z}-S_{\mathrm{L}}^{z}\right)+\frac{\lambda}{\Delta} \sum_{k=1}^{N} \omega(k)\left(\frac{1}{2} \mathbb{1}-S_{k}^{z}\right)
\end{aligned}
$$

- droplet BC

■ anisotropy parameter $\Delta>0$. Here: Ising phase $\Delta>1$
■ $\{\omega(k)\}$ iid random variables,
$\mathbb{P}(\omega(k) \in d v)=\varrho(v) d v$ with $\varrho \in L^{\infty}$ and $\operatorname{supp} \varrho \subset\left[0, \omega_{\max }\right]$. disorder parameter $\lambda>0$.

■ conservation law: $\left[H_{\mathrm{L}}^{\mathrm{xxz}}, \sum_{k=1}^{L} S_{k}^{z}\right]=0$

Unitary equivalence of XXZ to hard-core attractive particles

Spin configuration with fixed number of n down (z) spins is identified with ordered particle configurations on \wedge, i.e.,

$$
\mathcal{X}^{n}:=\left\{\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \Lambda^{n}: x_{1}<x_{2}<\ldots<x_{n}\right\}
$$

Unitary equivalence:

$$
\mathcal{U}: \mathcal{H}_{\mathrm{L}}^{\times \times z} \quad \longrightarrow \bigoplus_{n=0}^{L} \ell^{2}\left(\mathcal{X}^{n}\right)
$$

$$
2 \Delta H_{\mathrm{L}}^{\times \times z} \longrightarrow H:=-A+\lambda V+2 \Delta U
$$

- Hopping of particle configuartions $\mathbf{x}, \mathbf{y} \in \mathcal{X}^{n}$ at distance

$$
d(\mathbf{x}, \mathbf{y}):=\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|
$$

$$
A \delta_{\mathbf{x}}:=\sum_{\substack{\mathbf{y} \in \mathcal{X}^{n} \\ d(x, y)=1}} \delta_{\mathbf{y}},
$$

- Random potential:

$$
V \delta_{\mathbf{x}}=\left(\sum_{j=1}^{n} \omega\left(x_{j}\right)\right) \delta_{\mathbf{x}} .
$$

Unitary equivalence of XXZ to hard-core attractive particles

Spin configuration with fixed number of n down (z) spins is identified with ordered particle configurations on \wedge, i.e.,

$$
\mathcal{X}^{n}:=\left\{\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \Lambda^{n}: x_{1}<x_{2}<\ldots<x_{n}\right\}
$$

Unitary equivalence:

$$
\begin{array}{rll}
\mathcal{U}: & \mathcal{H}_{\mathrm{L}}^{\mathrm{xxz}} & \longrightarrow \bigoplus_{n=0}^{L} \ell^{2}\left(\mathcal{X}^{n}\right) \\
& 2 \Delta H_{\mathrm{L}}^{\mathrm{xxz}} & \longrightarrow H:=-A+\lambda V+2 \Delta U
\end{array}
$$

Cluster decomposition: $\quad \mathcal{X}^{n}=\bigcup_{k=1}^{n} \mathcal{C}^{(k)}$
■ Interaction for k-cluster configurations $\mathbf{x} \in \mathcal{C}^{(k)}$:
$U \delta_{\mathbf{x}}:=k \delta_{\mathbf{x}}$.

Spectrum in Ising phase $\Delta>1$ without disorder $\lambda=0$

Droplet band for fixed n :

$$
\begin{array}{r}
\Delta(n):=2 \sqrt{\Delta^{2}-1}\left[\frac{\cosh \left(\rho_{\Delta} n\right)-1}{\sinh \left(\rho_{\Delta} n\right)}, \frac{\cosh \left(\rho_{\Delta} n\right)-1}{\sinh \left(\rho_{\Delta} n\right)}\right] \subset[2(\Delta-1), 2(\Delta+1)] \\
\text { where } \rho_{\Delta}:=\ln \left(\Delta+\sqrt{\Delta^{2}-1}\right)
\end{array}
$$

Spectrum in Ising phase $\Delta>1$ without disorder $\lambda=0$

Let $Q^{(k)}$ stand for the orthogonal projection onto the subspace $\oplus_{j=k}^{\infty} \ell^{2}\left(\mathcal{C}^{(j)}\right)$ of at least k clusters, then:

$$
Q^{(k)} H Q^{(k)} \geqslant 2 k(\Delta-1) .
$$

Main quantity of interest and basic spectral information

Eigenfunctions correlator
 $I \subset \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathcal{X}^{n}$

$$
Q^{(n)}(\mathbf{x}, \mathbf{y}, l):=\sum_{E \in \sigma(H) \cap I}\left|\left\langle\delta_{\mathbf{x}}, P_{\{E\}}(H) \delta_{\mathbf{y}}\right\rangle\right|,
$$

- Many-particle density of states in / corresponding to $\mathbf{x} \in \mathcal{X}^{n}$:

$$
\mathbb{E}\left[Q^{(n)}(\mathbf{x}, \mathbf{x}, l)\right] \leq \inf _{t>0} e^{t \text { sup } /} \mathbb{E}\left[e^{-t \lambda v(\mathbf{x})}\right] \leq C(I) e^{-c \lambda n} .
$$

exponential supression!

Main quantity of interest and basic spectral information

The ground-state energy of H on an interval $\wedge \subset \mathbb{Z}$

$$
\inf \sigma\left(H_{\wedge}\right) \geqslant 2(\Delta-1)+\min \left\{2(\Delta-1), \lambda V_{\min }^{\mathcal{C}}\right\},
$$

with $V_{\text {min }}^{\mathcal{c}}:=\min _{\mathbf{x} \in \mathcal{C}} \sum_{i=1}^{n} \omega\left(x_{i}\right)$.

- By a Chernoff bound

$$
\mathbb{P}\left(\lambda V_{\min }^{\mathcal{C}} \leqslant E\right) \leqslant(|\Lambda|-n+1) \inf _{t>0} e^{t E}\left(\int e^{-t \lambda \omega} \varrho(\omega) \mathrm{d} \omega\right)^{n},
$$

vanishes in the limit $|\Lambda| \rightarrow \infty$ if n is proportional to $|\Lambda|$.

Main result

Theorem (Beaud/W. '17 - in slightly different form: Elgart/Klein/Stolz '17)
Let $\Delta>1$ and $\mu_{\tau}>0$ be such that

$$
E\left(\Delta, \mu_{\top}\right):=4 \Delta-12 e^{\mu_{\top}}>0,
$$

and let $I \subset\left[0, E\left(\Delta, \mu_{T}\right)\right)$ be a compact interval and $\mu \in\left(0, \mu_{\mathrm{T}}\right)$. There exist constants $\lambda_{0}, c, C \in(0, \infty)$ such that for all $n \geq 2, \wedge$, all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}^{n}$, and all $\lambda>\lambda_{0}$:

$$
\mathbb{E}\left[\left|Q^{(n)}(\boldsymbol{x}, \boldsymbol{y}, l)\right|\right] \leqslant C e^{-c \lambda n} F_{\mu / 2}(\boldsymbol{x}, \boldsymbol{y})
$$

where $F_{\mu}(\boldsymbol{x}, \boldsymbol{y}):=$

$$
\left\{\begin{array}{cl}
\exp \left(-\mu\left|x_{1}-y_{1}\right|\right) & \text { if } \boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \\
\sum_{\boldsymbol{w} \in \mathcal{C}} \exp \left(-\mu\left(d(\boldsymbol{x}, \boldsymbol{w})+\left|w_{1}-y_{1}\right|\right)\right) & \text { if } \boldsymbol{x} \notin \mathcal{C} \text { and } \boldsymbol{y} \in \mathcal{C}, \\
\sum_{\boldsymbol{w}, \boldsymbol{v} \in \mathcal{C}} \exp \left(-\mu\left(d(\boldsymbol{x}, \boldsymbol{w})+d(\boldsymbol{v}, \boldsymbol{y})+\left|w_{1}-v_{1}\right|\right)\right) & \text { if } \boldsymbol{x}, \boldsymbol{y} \notin \mathcal{C} .
\end{array}\right.
$$

$$
\text { Here } \mathcal{C} \equiv \mathcal{C}^{(1)}
$$

Main result

Theorem (Beaud/W. '17 - in slightly different form: Elgart/Klein/Stolz '17) Let $\Delta>1$ and $\mu_{\top}>0$ be such that

$$
E\left(\Delta, \mu_{\top}\right):=4 \Delta-12 e^{\mu_{\top}}>0,
$$

and let $I \subset\left[0, E\left(\Delta, \mu_{T}\right)\right)$ be a compact interval and $\mu \in\left(0, \mu_{T}\right)$. There exist constants $\lambda_{0}, c, C \in(0, \infty)$ such that for all $n \geq 2, \wedge$, all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}^{n}$, and all $\lambda>\lambda_{0}$:

$$
\mathbb{E}\left[\left|Q^{(n)}(\boldsymbol{x}, \boldsymbol{y}, l)\right|\right] \leqslant C e^{-c \lambda n} F_{\mu / 2}(\boldsymbol{x}, \boldsymbol{y})
$$

- Decay of clustered configurations $\mathbf{x}, \mathbf{y} \in \mathcal{C}$:

$$
F_{\mu}(\mathbf{x}, \mathbf{y})=\exp \left(-\mu\left|x_{1}-y_{1}\right|\right)
$$

Main result

Theorem (Beaud/W. '17 - in slightly different form: Elgart/Klein/Stolz '17)
Let $\Delta>1$ and $\mu_{\tau}>0$ be such that

$$
E\left(\Delta, \mu_{\top}\right):=4 \Delta-12 e^{\mu_{\top}}>0,
$$

and let $I \subset\left[0, E\left(\Delta, \mu_{T}\right)\right)$ be a compact interval and $\mu \in\left(0, \mu_{T}\right)$. There exist constants $\lambda_{0}, c, C \in(0, \infty)$ such that for all $n \geq 2, \wedge$, all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}^{n}$, and all $\lambda>\lambda_{0}$:

$$
\mathbb{E}\left[\left|Q^{(n)}(\boldsymbol{x}, \boldsymbol{y}, l)\right|\right] \leqslant C e^{-c \lambda n} F_{\mu / 2}(\boldsymbol{x}, \boldsymbol{y})
$$

- Decay of general configurations:

Strong summability properties of F

Lemma

Let $U, V \subset \wedge$ be two connected subsets with $\sup U<\inf V$ and fix $\mu>0$. Then, there is $C_{\mu} \in(0, \infty)$ such that

$$
\sum_{\substack{\boldsymbol{x} \in \mathcal{X}^{n} \\ \boldsymbol{x} \cup \neq \emptyset}} \sum_{\substack{\boldsymbol{y} \in \mathcal{X}^{n} \\ y \in \not \cap \emptyset}} F_{\mu}(\boldsymbol{x}, \boldsymbol{y}) \leqslant C_{\mu}(n+1) .
$$

Immediate consequences

Corollary (Decay of time-dependent one-particle density matrix)

In the situation of the theorem, there is some $\nu>0$ such that for any n, L, and any eigenstates $\psi_{E} \in \ell^{2}\left(\mathcal{X}^{n}\right)$ and $\xi, \eta \in \Lambda$:

$$
\mathbb{E}\left[\sum_{E \in \cap \cap \sigma\left(H^{(n)}\right)}\left|\gamma_{\psi_{E}}(\xi, \eta)\right|\right] \leq C e^{-c \lambda n} e^{-\nu|\xi-\eta|} .
$$

- Exponential clustering
- The spectrum is almost surely simple
cf. Abduhl-Rahman/Stolz '16

Immediate consequences (cont.)

Let ρ be any state, e.g. $\varrho=\left|\psi_{E}\right\rangle\left\langle\psi_{E}\right|$, and pick $U \subset \Lambda$

$$
\rho_{U}:=\operatorname{Tr}_{U c} \rho, \quad \text { acts on } \quad \bigoplus_{m=0}^{n} \ell^{2}\left(\mathcal{X}_{U}^{m}\right) .
$$

be the reduced state associated with $U \subset \Lambda$. Its Rényi entropy is:

$$
S_{\alpha}\left(\rho_{U}\right):=\frac{1}{1-\alpha} \ln \operatorname{Tr}\left(\rho_{U}^{\alpha}\right), \quad \alpha \in[0, \infty] .
$$

Recall:

- $\alpha=1$ von Neumann entropy.
- Monotonicity: $\quad \alpha \leq \beta$ implies $S_{\alpha} \geq S_{\beta} \geq 0$.

Immediate consequences (cont.)

Let ρ be any state, e.g. $\varrho=\left|\psi_{E}\right\rangle\left\langle\psi_{E}\right|$, and pick $U \subset \Lambda$

$$
\rho_{U}:=\operatorname{Tr} \mathrm{Tr}_{U c} \rho, \quad \text { acts on } \quad \bigoplus_{m=0}^{n} \ell^{2}\left(\mathcal{X}_{U}^{m}\right) .
$$

be the reduced state associated with $U \subset \Lambda$. Its Rényi entropy is:

$$
S_{\alpha}\left(\rho_{U}\right):=\frac{1}{1-\alpha} \ln \operatorname{Tr}\left(\rho_{U}^{\alpha}\right), \quad \alpha \in[0, \infty] .
$$

Corollary (Area law for entropy)

In the situation of the Theorem, for any $\alpha \in(0,1)$ there is $C_{\alpha} \in(0, \infty)$ such that for any n, L and $U \subset \wedge$:

$$
\mathbb{E}\left[e^{(1-\alpha) S_{\alpha}([|\psi\rangle\langle\psi|] U)}\right] \leq C_{\alpha}
$$

for all $\psi=P_{l}(H) \psi \in \ell^{2}\left(\mathcal{X}^{n}\right)$.

- Logarithmic behavior in case of no disorder
- In agreement with numerical findings in Znidaric/Prosen/ Prelovsek '08 and Bauer/Nayak '13

Proof of area law for $\rho=|\psi\rangle\langle\psi|$ with $\psi \in \ell^{2}\left(\mathcal{X}^{n}\right)$ and $0<\alpha<1$

The reduced density matrix ρ_{U} decomposes into the case of having $m=0,1, \ldots, \min \{|U|, n\}$ particles on U :

$$
\rho_{U}=\bigoplus_{m=0}^{\min \{|U|, n\}} \rho_{U}^{(m)}, \quad \rho_{U}^{(m)}(\mathbf{x}, \mathbf{y})=\sum_{\mathbf{z} \in \mathcal{X}_{U C}^{n-m}} \overline{\psi^{n}(\{\mathbf{x}, \mathbf{z}\})} \psi^{n}(\{\mathbf{y}, \mathbf{z}\})
$$

Thus if $|U| \geq n$:

$$
\begin{aligned}
\operatorname{Tr}\left(\rho_{U}^{\alpha}\right) & =\sum_{m=0}^{n} \operatorname{Tr}\left(\left(\rho_{U}^{(m)}\right)^{\alpha}\right) \leq 2+\sum_{m=1}^{n-1} \sum_{\mathbf{x} \in \chi_{U}^{m}}\left\langle\delta_{\mathbf{x}}, \rho_{U}^{\alpha} \delta_{\mathbf{x}}\right\rangle \leq 2+\sum_{m=1}^{n-1} \sum_{\mathbf{x} \in \chi_{U}^{m}}\left\langle\delta_{\mathbf{x}}, \rho_{U} \delta_{\mathbf{x}}\right\rangle^{\alpha} \\
& \leq 2+\sum_{m=1}^{n-1} \sum_{\mathbf{x} \in \mathcal{X}_{U}^{m}} \sum_{\mathbf{z} \in \mathcal{X}_{u}^{n-m}}\left|\psi^{n}(\{\mathbf{x}, \mathbf{z}\})\right|^{2 \alpha} \\
& \leq 2+\sum_{m=1}^{n-1} \sum_{\mathbf{x} \in \mathcal{X}_{U}^{m}} \sum_{\mathbf{z} \in \mathcal{X}_{U \cup}^{n-c}} \sum_{\mathbf{y} \in \mathcal{X}^{n}} Q^{(n)}((\mathbf{x}, \mathbf{z}), \mathbf{y}, I)^{\alpha}
\end{aligned}
$$

Take expection values:

$$
\mathbb{E}\left[\operatorname{Tr}\left(\rho_{U}^{\alpha}\right)\right] \leq 2+\sum_{m=1}^{n-1} \sum_{\mathbf{x} \in \mathcal{X}_{U}^{m}} \sum_{\mathbf{z} \in \mathcal{X}_{U c}^{n-m}} \sum_{\mathbf{y} \in \mathcal{X}^{n}} C e^{-c \lambda n} F_{\alpha \mu / 2}((\mathbf{x}, \mathbf{z}), \mathbf{y})
$$

Proof of area law for $\rho=|\psi\rangle\langle\psi|$ with $\psi \in \ell^{2}\left(\mathcal{X}^{n}\right)$ and $0<\alpha<1$

The reduced density matrix ρ_{U} decomposes into the case of having $m=0,1, \ldots, \min \{|U|, n\}$ particles on U :

$$
\rho_{U}=\bigoplus_{m=0}^{\min \{|U|, n\}} \rho_{U}^{(m)}, \quad \rho_{U}^{(m)}(\mathbf{x}, \mathbf{y})=\sum_{\mathbf{z} \in \mathcal{X}_{U c}^{n-m}} \overline{\psi^{n}(\{\mathbf{x}, \mathbf{z}\})} \psi^{n}(\{\mathbf{y}, \mathbf{z}\})
$$

Thus if $|U| \geq n$: Take expection values:

$$
\mathbb{E}\left[\operatorname{Tr}\left(\rho_{U}^{\alpha}\right)\right] \leq 2+\sum_{m=1}^{n-1} \sum_{\mathbf{x} \in \mathcal{X}_{U}^{m}} \sum_{\mathbf{z} \in \mathcal{X}_{U c}^{n-m}} \sum_{\mathbf{y} \in \mathcal{X}^{n}} C e^{-c \lambda n} F_{\alpha \mu / 2}((\mathbf{x}, \mathbf{z}), \mathbf{y}) .
$$

Use

Lemma

Let $U \subset \wedge$ be a connected strict subset, $U^{c}:=\Lambda \backslash U$ and $\mu>0$. Then, there exists a second-order polynomial $C(n)$ in n (depending on μ) such that

$$
\sum_{\substack{\boldsymbol{x} \in \mathcal{X}^{n} \\ \boldsymbol{x} \cap \neq \emptyset \\ \boldsymbol{x} \cap U^{c} \neq \emptyset}} \sum_{\boldsymbol{y} \in \mathcal{X}^{n}} F_{\mu}(\boldsymbol{x}, \boldsymbol{y}) \leqslant C(n)
$$

