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Many-body localization (MBL)

Physics phenomenon: disordered quantum systems may exhibit phases
in which the equidistribution postulate is violated, i.e.

‘typical stationary states are spread uniformly over the energy shell’

(ergodic hypothesis)
Excess charge _ Excess charge
Quantum evolution . . -
at t=0 remains indefinitely
777777 »>

Prototype: Non-interacting quantum particle in a random potential

Anderson Localization

Challenge: Definition, existence & description of many-body localiza-

tion for interacting systems.
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m The phase diagram
m Useful quantities
m Proof of localization at high disorder

Part Il Tiny steps towards understanding MBL

m Short overview over the mathematical literature
Sketch of localization proof for 2 interacting particles
Localization of a droplet in the XXZ spin chain
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Partl:  Localization for non-interacting particles in a nutshell

Anderson model:
Single quantum particle in random potential on G:

H=T+ AV, in G)

j—i‘b.J» ! o
PRSEI ol

m (Tv)(x) = > %)
y:d(x,y)=1
m {V(x)}xec iid random variables. P(V(x) € dv) = p(v)dv, o € L*=.

m Disorder strength: A > 0.



Expected phase diagram for G =

Consequence of ergodicity:

Dimensionsd =1ord = 2:

Dimensiond > 3:

79:

There are X# C R such that almost surely

oy(H) =¥, # = -, ac, pp, sc

Forany A > 0: Y =Y*=90

PP no transport,
Poisson level statistics,

3% tran
GOE level statistics, ...
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Quantities capturing the transition

Resolvent and Green function at z € C\o(H)
G(x.y:2) = (00, (H = 2)'8) = [(E = 2) " ucy (dE)

Eigenfunction correlator aka total variation of spectral measure

Q. yil) = eyl (= > el [ve(y)|

Eeo(H)n!

where the last equality requires simple spectrum.

Some relations

m Transport:  sup <5X,e’”HP,(H)5y>‘ < Q(x,y; )

terR
Spectral information then available through the RAGE theorem.

m For[Gl <ot QUxyil)=lim 1%3/|G(X7y; E)[° dE
5 /



Anderson’s argument for localization at high disorder

1 1 _ 1 T 1
H—z MNW-z AN-z H-z
leads for Imz > || T|| to a convergent path expansion:

G(x,y;2) = > (1" T(7(0),7(1)) T((1),7(2))

yiX—y

Iterating the resolvent equation:

[l 1
T =D [ vy =2

Intuition:  The x € G for which |AV(x) — z| > deg, are spatially rare.
Hence most paths collect an exponential decay.



Proof of localization at high disorder

Problem: For z € A supp o exceptional x € G exist for which arbitrarily
large amplification occurs in this expansion exists. Their contribution is
however suppressed probabilstically, i.e., for any t > 0:

s ? (G > 1) < TR
Hence, for any s € (0,1): iléré/ |)\Q‘S\/3Cil/|3 < (fl‘f)l“;/)\z =: F < 00
Technique: (cf. Anderson '58)
Feenberg expansion, i.e., loop-erased version: (wlog x#Yy)
(SAW)
G(x,y:2) = Y_ (-1 T(5(0),4(1)) T(3(1),4(2))
Fixoy 1] 1
TEIA = 1),5050) T (305 Home—2 2 04(k)) 5
k=0
= —G(x,x;2) > T(x,v) Guye(v,y:2).
vid(x,v)=1

where Gg is the Green function restricted to B C G.



Proof of localization at high disorder

G(x,y;z) = —G(x, x; 2) Z T(x,V) Ge(v, y: 2).

vid(x,v)=1
Taking s € (0, 1) moments and (conditional) expectation values:

E[Gxy:2F) < Y. E[IG(xx:2)P 16 (v, y: 2)°]

v:d(x,v)=1
= Y E[EXUG(X,X;ZNS] \G(X)(v,y;z)|s]
v:d(x,v)=1
<% Y E[6v 2]
vid(x,v)=1

Use Feshbach-Krein-Schur formula, i.e.  G(x, x; z) = (AV(x) — a(2))~"  with some a(z) € C.

Under the condition | e™*¢ := deg % < 1,| iteration yields:

Co o
E[IG(x,y;2)°] < T:e usdey)



Recall: Feshbach-Krein-Schur formula

Theorem
Let H be a self-adjoint operator in some Hilbert space H and let P be an
orthogonal projection onto a closed subspace on which we define
K(z) .= P(H-2z)"'P, zeC\R.

Then for any z € C\R and any bounded self-adjoint operator of the form
A= PAP,

m the operator 1 + AK(z) is invertible on PH,

m on PH one has the identity

(H+A—-2) P=(H-2) P[l+AK@I; P

Exercise:  Prove this (for matrices) and apply it to the case P = |dx){dx|!



Localization at high disorder

Theorem

If X > (Csdeg)"/s for some s € (0, 1), then there is i € (0, o0) such that for
any bounded Borel | C R and all x,y € G:

E[Q(x, y; )] < A e HIY)

at some A, < oo.

m For d = 1 proven by Kunz/Souillard '82
m For arbitrary d proven by Aizenman '94
m Other trailblazing works on Anderson localization:

Goldsheid/Molchanov/Pastur '73  (d =1)
Fréhlich/Spencer '83  (Multiscale Analysis d > 1)
Aizenman/Molchanov '92  (Fractional Moments d > 1)



More information

Random Operators
D

and Dynamics

Michael Aizenman
Simone Warzel
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Part Il:  Steps towards understanding MBL

Proposal by Basko/Aleiner/Altshuler '06:

Starting from a non-interacting system of n particles on A C Z9 in the
completely localized phase, turning on weak interactions amounts to an
effective sparse hopping on the graph of particle configurations

X = (X1,X2, ..., %n) €N"

Essentially the same argument as in the one-particle case, is proposed to
lead to exponential decay of the many-particle Green function Gf\”)(x, Y, 2).

Problem:

Control of resonant spots x is much more complicated due much less
randomness in configuration space!



Some selected mathematical efforts

Systems of a fixed but arbitrary number of particles:
B Aizenman/W.’09, Chulaevsky/Suhov '09—'14
B Droplet spectrum of the XXZ spin chain
Beaud/W. arXiv:1703.02465
Elgart/Klein/Stolz  arXiv:1703.07483

Localization in integrable models

B for XY spin chain Hamza/Sims/Stolz '08, Sims/W. 16,
... Abdul-Rahman/Nachtergaele/Sims/Stolz '16
B for Tonks-Girarndeau gas Seiringer/W. '16

Decay of correlations of all states in certain one-dimensional spin
chain

Imbrie '14

Ground-state localisation of weakly interacting fermions
W for Aubry-André potential Mastropietro '16
W within the Hartee-Fock theory Ducatez '16



Example: Localization for 2 hard-core particleson A C Z

Consider H = Z(T +AV);+ U inf?(x®) e.g. with nn interaction U.
i

Configuration space: \? := {x = (x1,%2) € A% | Xy < X2}

£

XV

| <

Clustered configurations: C = {Xx|x. = x; + 1}



Sketch of localization proof for x,y € C with x4 < y;

Similarly to the one-particle case a ’last exit’ resolvent expansion into
A =AN[xs + 1,00) leads to:

|GA(X,Y: 2)| < |Ga(X, U(Vo); 2)[|Gac(Vo, Y; 2)]
+ > 1GA(X, u(v); 2)[|Gag (v, Y: 21,

v¢e
vi=xqy+1

where vo = (x1 + 1, x2 + 1) € C, and u(v) is the unique neighboring
configuration of v with particle outside Ax.
s] . Gs L
m Use: E¢ [\G,\(x,y; z)| ] < F for any configuration with £ € xand £ € y.

m Expand the second factor in terms of the Green function G® of the operator projected on non-clustered
configurations:

Gy < 3 16D (v, Wi 2)[1Gay (2, Y 2)]
we Xx\Cx
zeCyx,d(w,z)=1
The proof may proceed supposing
‘GS\QX)(WW; 7)| < C e HTdv.w)

to conclude by iteration for x,y € C: (Exercise:  show this!)

Cs —pixi—
]EUG/\(X7Y§Z)\S} < T\:e wsl X1 —y1l



Sketch of localization proof for x,y € C with x4 < y;

Two cases for which

G2 (v, w; 2)| < Ce HTeMW

holds:

G,(\z) is essentially non-interacting for which the above was already

established at least in expectation.
Aizenman/W.’09, Chulaevsky/Suhov '09-'14

assume attractive interaction and the fact that Re z < Eciuster Break—up
such that the above follows by a Combes-Thomas bound.

Beaud/W. 17, Elgart/Klein/Stolz '17



XXZ spin chain in random field

L
Spins 3 on A :=[1,L] N Z: H = ® CX
k=1

1
xxz o

L—
{ (Sk®Sk1+ S, ®S,,) + (Sk® Skt — 31k ® Lipt)
k=1

A N
+ 30 =8-S+ 3 w31 - S,

m droplet BC
m anisotropy parameter A > 0. Here: Ising phase A > 1
m {w(k)} iid random variables,
P (w(k) € dv) = o(v) dv with ¢ € L> and supp ¢ C [0, wmax]-
disorder parameter A > 0.
m conservation law: [ HX2 S 1Sk} =



Unitary equivalence of XXZ to hard-core attractive particles

Spin configuration with fixed number of n down (z) spins is identified with
ordered particle configurations on A, i.e.,

X'i={x={x1,%, ..., X} EN" : X1 <X <...<Xn}

A A | A | L1 | |
l l Np l J Y ! v
X, X, Xa Xy Xg
L
Unitary equivalence: Uu: M — @)
n=0

2AHY — H:=—-A+AV+2AU,

m Hopping of particle configuartions x,y € X" Ady = Z Sy,
atdistance  d(x,y) := 7, |x — ¥l A

-

m Random potential: Vix = (
J

1w(m)) Ox.



Unitary equivalence of XXZ to hard-core attractive particles

Spin configuration with fixed number of n down (z) spins is identified with
ordered particle configurations on A, i.e.,

X' = {x={x1,%, ..., X} EN" : Xy <X <...<Xn}

A A | A | L1 | |
! I N l J | N
X, X, Xa Xy Xg
L
2
Unitary equivalence: u: H — P
n=0

2AHY* — H:=—-A4+)\V4+2AU,

n
Cluster decomposition: x"=ch
k=1

m Interaction for k-cluster configurations x € ¢(¥: Ubx = kéx.



Spectrum in Ising phase A > 1 without disorder A =0 Nachtergaele/Starr '01

"multiplicity of ground states"
o2 7 109 8 7 6 5 4 3 2 1
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(Energy scale:  A(A) := }+/1 — A—2, cf. Nachtergaele/Starr '01)
Droplet band for fixed n:

h(pan) —1 cosh(pa
)= 2y/A2 - Cozmrf(p';)n) ’Cozm(rf(pz)n) C [2(a—1),2(A+1)]

where pa = In(A + VA% — 1)




Spectrum in Ising phase A > 1 without disorder A =0 Nachtergaele/Starr '01

"multiplicity of ground states"
0O 2 7 109 8 7 6 5 4 3 2 1
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(Energy scale:  A(A) := % 1 — A—2, cf. Nachtergaele/Starr ’01)

Let Q™ stand for the orthogonal projection onto the subspace B, ¢*(C¥)
of at least k clusters, then: QWHQW > 2k(A —1).



Main quantity of interest and basic spectral information

Eigenfunctions correlator IC Rand x,y € X"

Q(x,y, I) = Z |(6x, Piey (H)dy) |

Eca(H)NI

m Many-particle density of states in / corresponding to x € X":
(n) H tsup / —tAV(x) —cAn
E [C) (x,x, I)] < r@;e E [e ] <C(he .

exponential supression!



Main quantity of interest and basic spectral information

The ground-state energy of H on an interval A C Z

info(Hh) >2(A — 1) + min{2(A — 1), A\Vi, },

Wlth Vrf‘ljin = minxec 27:1 UJ(X[)
m By a Chernoff bound
POVEL < B) < (N =+ )jnf e ([ e s

vanishes in the limit |A| — oo if nis proportional to |A|.

no statement about positive density can be made!



Main result

Theorem (Beaud/W. ’17 — in slightly different form: Elgart/Klein/Stolz ’17)
Let A > 1 and ur > 0 be such that
E(A, ur) :=4A — 12" > 0,

and let | C [0, E(A, ur)) be a compact interval and i € (0, ur). There exist
constants Ao, ¢, C € (0,00) such that foralln> 2, A, all x,y € X", and all
A > Aos

E“O(n)(xa Y, I)H < Ceickn FN/2(X7 _V)

where F, (X, y) :=

exp(—ulxi — yil) ifx,yeC,
> exp(—p(d(x, w) + [ws — y1])) ifxgcCandyec,
weCl
> exp(—p(dixw)+d(v,y) + [wi — i) ifxy¢cC.
w,veC

Herec = ¢,



Main result

Theorem (Beaud/W. '17 —in slightly different form: Elgart/Klein/Stolz *17)
Let A > 1 and ur > 0 be such that
E(A, ur) :=4A —12e"" >0,

andlet | C [0, E(A, ut)) be a compact interval and i € (0, ur). There exist
constants o, ¢, C € (0,00) such that foralln > 2, A, all x,y € X", and all
A > Ao!

E[[Q7(x.y, )] < Ce " Fu/a(x,y)

m Decay of clustered configurations x,y € C:

X4 ><2 Xh

F.(x,y) = exp(—pulx — y1])



Main result

Theorem (Beaud/W. '17 —in slightly different form: Elgart/Klein/Stolz *17)
Let A > 1 and ur > 0 be such that
E(A, ur) :=4A —12€"" >0,

and let ! C [0, E(A, ur)) be a compact interval and 1 € (0, ). There exist
constants \o, ¢, C € (0,00) such that foralln> 2, A, all x,y € X", and all
A > Ao!

E[[Q”(x.y, NI} < Ce " Fu/a(x,y)

m Decay of general configurations:




Strong summability properties of F

Lemma

Let U,V C A be two connected subsets with sup U < inf V and fix p > 0.
Then, there is C,, € (0, c0) such that

> D Fuxy) <Cu(n+1).
xeXx" yex”
XNUF#D ynV#£0



Immediate consequences

Density matrix of ¢ € £2(X"): Yo (€,7) Z Z P(X)p(y

xex"yex"
£Ex ney

Corollary (Decay of time-dependent one-particle density matrix)

In the situation of the theorem, there is some v > 0 such that for any n, L,
and any eigenstates g € (2(X") and &, € A:

= [ Z |’W)E(€7 77)|] < Ce—CAn e‘”‘g—ﬂ\ )

Ecing(H(M)

m Exponential clustering
m The spectrum is almost surely simple cf. Abduhl-Rahman/Stolz '16



Immediate consequences (cont.)

Let p be any state, e.g. 0 = |¢&)(¢e|, and pick U C A
v =Truep, actson @, C(X0).

be the reduced state associated with U C A. lts Rényi entropy is:

Sa(pu) = InTr(pg) a € [0,00].

1—-«

Recall:
® « = 1 von Neumann entropy.
m Monotonicity: a < Bimplies S, > Sg > 0.



Immediate consequences (cont.)

Let p be any state, e.g. ¢ = |¢¥e)(¥e|, and pick U C A
pu:=Tryep, actson @°_,A(X).

be the reduced state associated with U C A. lts Rényi entropy is:

— InTr(pﬁ) , a € [0,00].

1
Sa(pU) = 1

Corollary (Area law for entropy)
In the situation of the Theorem, for any o € (0, 1) there is C,, € (0, c0) such
that forany n, L and U C A:

E [6(1—a>sa<w><wuu)} <cC,.

for all p = Pi(H)y € (2(X").

m Logarithmic behavior in case of no disorder

m In agreement with numerical findings in Znidaric/Prosen/ Prelovsek '08 and
Bauer/Nayak '13



Proof of area law for p = [1))(¢)| with o) € /2(X") and 0 < a < 1

The reduced density matrix py decomposes into the case of having

m=20,1,...,min{]U|, n} particles on U:

min{|U|,n}

pU = @ p(Um)7 p(Um)(x7y) = Z 1/’”({*7 z})wn({y,z}) .
m=0 zex[ ;"
Thus if [U| > n:
n n—1 n—1

Tr(pf) = S TH((pU")*) <2+ 30 3 (e plon) <2+ > S (0, pude)®

m=0 m=1xex{] m=1xex{]

s2+n§_2 >3 (i

m=1 XEXLT ZGXZC—m
n—1

<2+ 5 3 Y Q”(x2).y, )"
m=1xeX[] zeXZc—m yexn

Take expection values:

E [Tr(p3)] §2+§ > > 2 CeMFup(xayy). O

m=1 XGX[T ZGXLr;C—m yexn



Proof of area law for p = [1))(¢)| with o) € /2(X") and 0 < a < 1

The reduced density matrix py decomposes into the case of having

m=20,1,...,min{]U|, n} particles on U:
min{|U|,n}
w= P A7, Pxy)= > ur({xz)¢"({y,z}).
m=0

n—m
ZeX o

Thus if [U| > n: Take expection values:

E [Tr(pg)] < 2+§ Z Z Z Ce M Fa.p2((x,2),y). O

m=1xeX[] ze/yg;m yexn
Use

Lemma

Let U C A be a connected strict subset, U° := A\ U and . > 0. Then, there
exists a second-order polynomial C(n) in n (depending on ) such that

§ § : FH(va)SC(n)
xeXx" yexn
xNU#D
XNUC#0



