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Many-body localization (MBL)

Physics phenomenon: disordered quantum systems may exhibit phases
in which the equidistribution postulate is violated, i.e.

’typical stationary states are spread uniformly over the energy shell’
(ergodic hypothesis)

Excess charge
at t=0

Excess charge
remains indefinitely

Quantum evolution

     e-itH   (t > 0)

x x

Prototype: Non-interacting quantum particle in a random potential
Anderson Localization

Challenge: Definition, existence & description of many-body localiza-
tion for interacting systems.
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Part I: Localization for non-interacting particles in a nutshell

Anderson model:

Single quantum particle in random potential on G:

H = T + λV , in `2(G)

(Tψ) (x) :=
∑

y :d(x,y)=1

ψ(y)

{V (x)}x∈G iid random variables. P(V (x) ∈ dv) = %(v)dv , % ∈ L∞.

Disorder strength: λ > 0.



Expected phase diagram for G = Zd :

Consequence of ergodicity: There are Σ# ⊂ R such that almost surely
σ#(H) = Σ#, # = ·, ac, pp, sc

Dimensions d = 1 or d = 2: For any λ > 0: Σsc = Σac = ∅

Dimension d ≥ 3: e.g. %(v) = 1[− 1
2 ,

1
2 ](v)

−2d

Σac, transport,
GOE level statistics, . . .

Σpp, no transport,
Poisson level statistics,
. . .

E2d

λ



Quantities capturing the transition

1 Resolvent and Green function at z ∈ C\σ(H)

G(x , y ; z) = 〈δx , (H − z)−1δy 〉 =

∫
(E − z)−1µx,y (dE)

2 Eigenfunction correlator aka total variation of spectral measure

Q(x , y ; I) = |µx,y | (I) =
∑

E∈σ(H)∩I

|ψE (x)| |ψE (y)|

where the last equality requires simple spectrum.

Some relations

Transport: sup
t∈R

∣∣∣〈δx , e−itHPI(H)δy 〉
∣∣∣ ≤ Q(x , y ; I)

Spectral information then available through the RAGE theorem.

For |G| <∞: Q(x , y ; I) = lim
s↑1

1− s
2

∫
I
|G(x , y ; E)|s dE



Anderson’s argument for localization at high disorder

Iterating the resolvent equation:
1

H − z
=

1
λV − z

− 1
λV − z

T
1

H − z
leads for Im z > ‖T‖ to a convergent path expansion:

G(x , y ; z) =
∑
γ:x 7→y

(−1)|γ| T (γ(0), γ(1)) T (γ(1), γ(2))

· · ·T (γ(|γ| − 1), γ(|γ|))

|γ|∏
k=0

1
V (γ(k))− z

Intuition: The x ∈ G for which |λV (x)− z| ≥ degG are spatially rare.
Hence most paths collect an exponential decay.



Proof of localization at high disorder

Problem: For z ∈ λ supp % exceptional x ∈ G exist for which arbitrarily
large amplification occurs in this expansion exists. Their contribution is
however suppressed probabilstically, i.e., for any t > 0:

sup
α∈C

P
(

1
|λV (x)− α| > t

)
≤ 2‖%‖∞

tλ
.

Hence, for any s ∈ (0, 1): sup
α∈C

∫
%(v)dv
|λv − α|s ≤

(2‖%‖∞)s

(1− s)λs =:
Cs

λs <∞ .

Technique: (cf. Anderson ’58)

Feenberg expansion, i.e., loop-erased version: (wlog x 6= y )

G(x , y ; z) =

(SAW )∑
γ̂:x 7→y

(−1)|γ̂| T (γ̂(0), γ̂(1)) T (γ̂(1), γ̂(2))

· · ·T (γ̂(|γ̂| − 1), γ̂(|γ̂|))

|γ̂|∏
k=0

〈δγ̂(k),
1

H{γ̂,k}c − z
, δγ̂(k)〉 ,

= −G(x , x ; z)
∑

v :d(x,v)=1

T (x , v) G{x}c (v , y ; z) .

where GB is the Green function restricted to B ⊂ G.



Proof of localization at high disorder

G(x , y ; z) = −G(x , x ; z)
∑

v :d(x,v)=1

T (x , v) G{x}c (v , y ; z) .

Taking s ∈ (0, 1) moments and (conditional) expectation values:

E
[
|G(x , y ; z)|s

]
≤

∑
v :d(x,v)=1

E
[
|G(x , x ; z)|s |G(x)(v , y ; z)|s

]
=

∑
v :d(x,v)=1

E
[
Ex
[
|G(x , x ; z)|s

]
|G(x)(v , y ; z)|s

]
≤ Cs

λs

∑
v :d(x,v)=1

E
[
|G(x)(v , y ; z)|s

]
.

Use Feshbach-Krein-Schur formula, i.e. G(x, x ; z) = (λV (x)− α(z))−1 with some α(z) ∈ C.

Under the condition e−µs := degG
Cs

λs < 1 , iteration yields:

E
[
|G(x , y ; z)|s

]
≤ Cs

λs e−µsd(x,y) .



Recall: Feshbach-Krein-Schur formula

Theorem

Let H be a self-adjoint operator in some Hilbert space H and let P be an
orthogonal projection onto a closed subspace on which we define

K (z) := P (H − z)−1 P , z ∈ C\R .

Then for any z ∈ C\R and any bounded self-adjoint operator of the form
A = PAP,

the operator 1 + A K (z) is invertible on PH,

on PH one has the identity

(H + A− z)−1 P = (H − z)−1 P [1 + A K (z)]−1
P P .

Exercise: Prove this (for matrices) and apply it to the case P = |δx〉〈δx |!



Localization at high disorder

Theorem

If λ > (Cs degG)1/s for some s ∈ (0, 1), then there is µ ∈ (0,∞) such that for
any bounded Borel I ⊂ R and all x , y ∈ G:

E [Q(x , y ; I)] ≤ AI e−µd(x,y)

at some AI <∞.

For d = 1 proven by Kunz/Souillard ’82

For arbitrary d proven by Aizenman ’94

Other trailblazing works on Anderson localization:

Goldsheid/Molchanov/Pastur ’73 (d = 1)

Fröhlich/Spencer ’83 (Multiscale Analysis d ≥ 1)

Aizenman/Molchanov ’92 (Fractional Moments d ≥ 1)



More information



Part II: Steps towards understanding MBL

Proposal by Basko/Aleiner/Altshuler ’06:

Starting from a non-interacting system of n particles on Λ ⊂ Zd in the
completely localized phase, turning on weak interactions amounts to an
effective sparse hopping on the graph of particle configurations

x = (x1, x2, . . . , xn) ∈ Λn

Essentially the same argument as in the one-particle case, is proposed to
lead to exponential decay of the many-particle Green function G(n)

Λ (x, y, z).

Problem:

Control of resonant spots x is much more complicated due much less
randomness in configuration space!



Some selected mathematical efforts

1 Systems of a fixed but arbitrary number of particles:
Aizenman/W. ’09, Chulaevsky/Suhov ’09–’14

Droplet spectrum of the XXZ spin chain

Beaud/W. arXiv:1703.02465
Elgart/Klein/Stolz arXiv:1703.07483

2 Localization in integrable models
for XY spin chain Hamza/Sims/Stolz ’08, Sims/W. 16,

. . . Abdul-Rahman/Nachtergaele/Sims/Stolz ’16
for Tonks-Girarndeau gas Seiringer/W. ’16

3 Decay of correlations of all states in certain one-dimensional spin
chain

Imbrie ’14

4 Ground-state localisation of weakly interacting fermions
for Aubry-André potential Mastropietro ’16
within the Hartee-Fock theory Ducatez ’16



Example: Localization for 2 hard-core particles on Λ ⊂ Z

Consider H =
∑

j

(T + λV )j + U in `2(χ2) e.g. with nn interaction U.

Configuration space: χ2 := {x = (x1, x2) ∈ Λ2 | x1 < x2}

Clustered configurations: C = {x | x2 = x1 + 1}



Sketch of localization proof for x,y ∈ C with x1 < y1

Similarly to the one-particle case a ’last exit’ resolvent expansion into
Λx = Λ ∩ [x1 + 1,∞) leads to:

|GΛ(x, y; z)| ≤ |GΛ(x,u(v0); z)||GΛx (v0, y; z)|

+
∑
v/∈C

v1=x1+1

|GΛ(x,u(v); z)||GΛx (v, y; z)| ,

where v0 = (x1 + 1, x2 + 1) ∈ C, and u(v) is the unique neighboring
configuration of v with particle outside Λx.

Use: Eξ
[
|GΛ(x, y; z)|s

]
≤

Cs

λs
for any configuration with ξ ∈ x and ξ ∈ y.

Expand the second factor in terms of the Green function G(2) of the operator projected on non-clustered
configurations:

|GΛx (v, y; z)| ≤
∑

w∈Xx\Cx
z∈Cx,d(w,z)=1

|G(2)
Λx

(v,w; z)||GΛx (z, y; z)|

The proof may proceed supposing

|G(2)
Λx

(v,w; z)| ≤ C e−µT d(v,w)

to conclude by iteration for x, y ∈ C: (Exercise: show this!)

E
[
|GΛ(x, y; z)|s

]
≤ Ĉs

λs e−µs|x1−y1|



Sketch of localization proof for x,y ∈ C with x1 < y1

Two cases for which

|G(2)
Λx

(v,w; z)| ≤ C e−µT d(v,w)

holds:

1 G(2)
Λx

is essentially non-interacting for which the above was already
established at least in expectation.

Aizenman/W. ’09, Chulaevsky/Suhov ’09–’14

2 assume attractive interaction and the fact that Re z < ECluster Break−up

such that the above follows by a Combes-Thomas bound.

Beaud/W. ’17, Elgart/Klein/Stolz ’17



XXZ spin chain in random field

Spins 1
2 on Λ := [1, L] ∩ Z: HXXZ

L =
L⊗

k=1
C2

k

HXXZ
L :=−

L−1∑
k=1

[
1
∆

(
Sx

k ⊗ Sx
k+1 + Sy

k ⊗ Sy
k+1

)
+
(
Sz

k ⊗ Sz
k+1 − 1

41k ⊗ 1k+1
)]

+ 1
2

(
1− Sz

1 − Sz
L
)

+
λ

∆

N∑
k=1

ω(k)
( 1

2 1− Sz
k
)
,

droplet BC

anisotropy parameter ∆ > 0. Here: Ising phase ∆ > 1

{ω(k)} iid random variables,

P (ω(k) ∈ dv) = %(v) dv with % ∈ L∞ and supp % ⊂ [0, ωmax].

disorder parameter λ > 0.

conservation law:
[
HXXZ

L ,
∑L

k=1 Sz
k

]
= 0



Unitary equivalence of XXZ to hard-core attractive particles

Spin configuration with fixed number of n down (z) spins is identified with
ordered particle configurations on Λ, i.e.,

X n :=
{

x = {x1, x2, . . . , xn} ∈ Λn : x1 < x2 < . . . < xn
}

Unitary equivalence: U : HXXZ
L −→

L⊕
n=0

`2(X n)
2∆ HXXZ

L −→ H := −A + λV + 2∆ U ,

Hopping of particle configuartions x, y ∈ X n

at distance d(x, y) :=
∑n

j=1|xj − yj |

Aδx :=
∑

y∈X n

d(x,y)=1

δy ,

Random potential: Vδx =

(
n∑

j=1
ω(xj )

)
δx.



Unitary equivalence of XXZ to hard-core attractive particles

Spin configuration with fixed number of n down (z) spins is identified with
ordered particle configurations on Λ, i.e.,

X n :=
{

x = {x1, x2, . . . , xn} ∈ Λn : x1 < x2 < . . . < xn
}

Unitary equivalence: U : HXXZ
L −→

L⊕
n=0

`2(X n)
2∆ HXXZ

L −→ H := −A + λV + 2∆ U ,

Cluster decomposition: X n =
n⋃

k=1
C(k)

Interaction for k -cluster configurations x ∈ C(k): Uδx := kδx.



Spectrum in Ising phase ∆ > 1 without disorder λ = 0 Nachtergaele/Starr ’01

(Energy scale: A(∆) := 1
2

√
1− ∆−2, cf. Nachtergaele/Starr ’01)

Droplet band for fixed n:

∆(n) := 2
√

∆2 − 1
[

cosh(ρ∆n)− 1
sinh(ρ∆n)

,
cosh(ρ∆n)− 1

sinh(ρ∆n)

]
⊂
[
2(∆−1), 2(∆ + 1)

]
where ρ∆ := ln(∆ +

√
∆2 − 1)



Spectrum in Ising phase ∆ > 1 without disorder λ = 0 Nachtergaele/Starr ’01

(Energy scale: A(∆) := 1
2

√
1− ∆−2, cf. Nachtergaele/Starr ’01)

Let Q(k) stand for the orthogonal projection onto the subspace
⊕∞

j=k `
2(C(j))

of at least k clusters, then: Q(k)HQ(k) > 2k(∆− 1).



Main quantity of interest and basic spectral information

Eigenfunctions correlator I ⊂ R and x, y ∈ X n

Q(n)(x, y, I) :=
∑

E∈σ(H)∩I

∣∣〈δx,P{E}(H)δy〉
∣∣ ,

Many-particle density of states in I corresponding to x ∈ X n:

E
[
Q(n)(x, x, I)

]
≤ inf

t>0
et sup I E

[
e−tλV (x)

]
≤ C(I) e−cλn .

exponential supression!



Main quantity of interest and basic spectral information

The ground-state energy of H on an interval Λ ⊂ Z

infσ
(
HΛ

)
> 2(∆− 1) + min

{
2(∆− 1), λVCmin

}
,

with VCmin := minx∈C
∑n

i=1 ω(xi ).

By a Chernoff bound

P
(
λVCmin 6 E

)
6 (|Λ| − n + 1) inf

t>0
etE
(∫

e−tλω%(ω)dω
)n

,

vanishes in the limit |Λ| → ∞ if n is proportional to |Λ|.

no statement about positive density can be made!



Main result

Theorem (Beaud/W. ’17 – in slightly different form: Elgart/Klein/Stolz ’17)

Let ∆ > 1 and µT > 0 be such that

E(∆, µT) := 4∆− 12eµT > 0 ,

and let I ⊂ [0,E(∆, µT)) be a compact interval and µ ∈ (0, µT). There exist
constants λ0, c,C ∈ (0,∞) such that for all n ≥ 2, Λ, all x, y ∈ X n, and all
λ > λ0:

E
[
|Q(n)(x, y, I)|

]
6 C e−cλn Fµ/2(x, y)

where Fµ(x, y) :=
exp
(
−µ|x1 − y1|

)
if x, y ∈ C,∑

w∈C

exp
(
−µ (d(x,w) + |w1 − y1|)

)
if x 6∈ C and y ∈ C,∑

w,v∈C

exp
(
−µ (d(x,w) + d(v, y) + |w1 − v1|)

)
if x, y 6∈ C.

Here C ≡ C(1).



Main result

Theorem (Beaud/W. ’17 – in slightly different form: Elgart/Klein/Stolz ’17)

Let ∆ > 1 and µT > 0 be such that

E(∆, µT) := 4∆− 12eµT > 0 ,

and let I ⊂ [0,E(∆, µT)) be a compact interval and µ ∈ (0, µT). There exist
constants λ0, c,C ∈ (0,∞) such that for all n ≥ 2, Λ, all x, y ∈ X n, and all
λ > λ0:

E
[
|Q(n)(x, y, I)|

]
6 C e−cλn Fµ/2(x, y)

Decay of clustered configurations x, y ∈ C:

Fµ(x, y) = exp
(
−µ|x1 − y1|

)



Main result

Theorem (Beaud/W. ’17 – in slightly different form: Elgart/Klein/Stolz ’17)

Let ∆ > 1 and µT > 0 be such that

E(∆, µT) := 4∆− 12eµT > 0 ,

and let I ⊂ [0,E(∆, µT)) be a compact interval and µ ∈ (0, µT). There exist
constants λ0, c,C ∈ (0,∞) such that for all n ≥ 2, Λ, all x, y ∈ X n, and all
λ > λ0:

E
[
|Q(n)(x, y, I)|

]
6 C e−cλn Fµ/2(x, y)

Decay of general configurations:



Strong summability properties of F

Lemma

Let U,V ⊂ Λ be two connected subsets with sup U < inf V and fix µ > 0.
Then, there is Cµ ∈ (0,∞) such that∑

x∈X n

x∩U 6=∅

∑
y∈X n

y∩V 6=∅

Fµ(x, y) 6 Cµ (n + 1) .



Immediate consequences

Density matrix of ψ ∈ `2(X n): γψ(ξ, η) :=
∑

x∈X n

ξ∈x

∑
y∈X n

η∈y

ψ(x)ψ(y).

Corollary (Decay of time-dependent one-particle density matrix)

In the situation of the theorem, there is some ν > 0 such that for any n, L,
and any eigenstates ψE ∈ `2(X n) and ξ, η ∈ Λ:

E

 ∑
E∈I∩σ(H(n))

|γψE (ξ, η)|

 ≤ C e−cλn e−ν|ξ−η| .

Exponential clustering

The spectrum is almost surely simple cf. Abduhl-Rahman/Stolz ’16



Immediate consequences (cont.)

Let ρ be any state, e.g. % = |ψE〉〈ψE |, and pick U ⊂ Λ

ρU := TrUc ρ , acts on
⊕n

m=0 `
2(Xm

U ).

be the reduced state associated with U ⊂ Λ. Its Rényi entropy is:

Sα(ρU) :=
1

1− α ln Tr
(
ραU
)
, α ∈ [0,∞] .

Recall:

α = 1 von Neumann entropy.

Monotonicity: α ≤ β implies Sα ≥ Sβ ≥ 0.



Immediate consequences (cont.)

Let ρ be any state, e.g. % = |ψE〉〈ψE |, and pick U ⊂ Λ

ρU := TrUc ρ , acts on
⊕n

m=0 `
2(Xm

U ).

be the reduced state associated with U ⊂ Λ. Its Rényi entropy is:

Sα(ρU) :=
1

1− α ln Tr
(
ραU
)
, α ∈ [0,∞] .

Corollary (Area law for entropy)

In the situation of the Theorem, for any α ∈ (0, 1) there is Cα ∈ (0,∞) such
that for any n, L and U ⊂ Λ:

E
[
e(1−α) Sα([|ψ〉〈ψ|]U )

]
≤ Cα .

for all ψ = PI(H)ψ ∈ `2(X n).

Logarithmic behavior in case of no disorder

In agreement with numerical findings in Znidaric/Prosen/ Prelovsek ’08 and
Bauer/Nayak ’13



Proof of area law for ρ = |ψ〉〈ψ| with ψ ∈ `2(X n) and 0 < α < 1

The reduced density matrix ρU decomposes into the case of having
m = 0, 1, . . . ,min{|U|, n} particles on U:

ρU =

min{|U|,n}⊕
m=0

ρ
(m)
U , ρ

(m)
U (x, y) =

∑
z∈X n−m

Uc

ψn
(
{x, z}

)
ψn({y, z}) .

Thus if |U| ≥ n:

Tr
(
ραU
)

=
n∑

m=0

Tr
(
(ρ

(m)
U )α

)
≤ 2 +

n−1∑
m=1

∑
x∈χm

U

〈δx, ρ
α
Uδx〉 ≤ 2 +

n−1∑
m=1

∑
x∈χm

U

〈δx, ρUδx〉α

≤ 2 +
n−1∑
m=1

∑
x∈Xm

U

∑
z∈X n−m

Uc

∣∣ψn({x, z})∣∣2α

≤ 2 +
n−1∑
m=1

∑
x∈Xm

U

∑
z∈X n−m

Uc

∑
y∈X n

Q(n)((x, z), y, I
)α

Take expection values:

E
[
Tr
(
ραU
)]
≤ 2 +

n−1∑
m=1

∑
x∈Xm

U

∑
z∈X n−m

Uc

∑
y∈X n

C e−cλn Fαµ/2
(
(x, z), y

)
.



Proof of area law for ρ = |ψ〉〈ψ| with ψ ∈ `2(X n) and 0 < α < 1

The reduced density matrix ρU decomposes into the case of having
m = 0, 1, . . . ,min{|U|, n} particles on U:

ρU =

min{|U|,n}⊕
m=0

ρ
(m)
U , ρ

(m)
U (x, y) =

∑
z∈X n−m

Uc

ψn
(
{x, z}

)
ψn({y, z}) .

Thus if |U| ≥ n: Take expection values:

E
[
Tr
(
ραU
)]
≤ 2 +

n−1∑
m=1

∑
x∈Xm

U

∑
z∈X n−m

Uc

∑
y∈X n

C e−cλn Fαµ/2
(
(x, z), y

)
.

Use

Lemma

Let U ⊂ Λ be a connected strict subset, Uc := Λ \ U and µ > 0. Then, there
exists a second-order polynomial C(n) in n (depending on µ) such that∑

x∈X n

x∩U 6=∅
x∩Uc 6=∅

∑
y∈X n

Fµ(x, y) 6 C(n) .


