Title: Geometric interpretation of the Lieb-Thirring conjecture
Abstract: Consider the Laplace operator with a negative potential V in n dimensions. Such a system would posses bound states with negative energies $e_{1} \leq e_{2} \leq \cdots<0$.

For their proof of stability of matter, Lieb and Thirring proved and used the following upper bound on the sum of the absolute values of the energies raised to a power γ

$$
\sum_{j \geq 1}\left|e_{j}\right|^{\gamma} \leq L_{\gamma, n} \int_{\mathbb{R}^{n}} V^{\gamma+n / 2} \mathrm{~d} x
$$

This inequality is known after its authors as the Lieb-Thirring inequality. The optimal constant $L_{\gamma, 1}$ is not known in dimension one for the values of $\gamma \in(1 / 2,3 / 2)$. Lieb and Thirring however conjectured, that the sharp constant $L_{\gamma, 1}$ is achieved for potentials which only have one bound state (which is known).

I will review a paper discussing the connection between the Lieb-Thirring conjecture in one dimension and isoperimetric problem for ovals on the plane by R. Benguria and M. Loss from 2004. This is only a reformulation of the conjecture, since the corresponding isoperimetric problem is an open question as well. The authors discuss potentials that host two bound states. Afterwards I will discuss the generalisation of the problem to potentials with three bound states.

