QLunch: Ulrik Hansen

Speaker: Ulrik Hansen

Title: Universality of Large-Scale Geometry for Planar Critical Random-Cluster Models

Abstract: Abstract: Conformal invariance of general critical planar lattice models was conjectured by Belavin, Polyakov and Zamolodchikov in the early 80s. Using the (non-rigorous) renormalisation group flow, they deduced that any scaling limit of such a model must be rotationally invariant. Since any such limit must also be translation and scale invariant, the argument goes that it will also be invariant under the action of the group of transformations which are locally a composition of these three types of transformations. This is exactly the conformal group, which, in the planar case, is infinite-dimensional and therefore, particularly rich as a symmetry group. Another conjecture of theoretical physics going back to Griffiths and Kadanoff is that of universality: That the scaling limits of various models with different microscopic details, e.g. the graph on which it is defined, turn out to be the same across so-called universality classes.

During the last 25 years, the first conjecture has received immense attention from the probabilistic community after Schramm's introduction of the SLE. In this talk, however, we shall turn our attention to the second question. Building on work by Duminil-Copin, Kozlowski, Krachun, Manolescu and Oulamara, we prove that the critical random-cluster models each satisfy a universality property across a large class of planar graphs including the hexagonal and triangular lattices. A consequence thereof will be that any scaling limit in one of these universality classes is rotationally invariant and thus, this may also be thought of as a stepping stone towards proving conformal invariance for all critical random-cluster models.

Based on joint work with Ioan Manolescu.