QSeminar: Maris Ozols
Speaker: Maris Ozols, QuSoft, University of Amsterdam
Title: Entropy modulo p and quantum information
Abstract: Tom Leinster recently introduced a curious notion of entropy modulo p (https://arxiv.org/abs/1903.06961). While entropy has a certain meaning in information theory and physics, mathematically it is simply a function with certain properties. Stating these as axioms, the function is unique. Surprisingly, Leinster shows that a function obeying the same axioms can also be found for "probability distributions" over a finite field, and this function is unique too.
In quantum information, mutually unbiased bases is an important set of measurements and an example of a quantum design. While in odd prime power dimensions their construction is based on a finite field, in dimension 2^n it relies on an unpleasant Galois ring. I will replace this ring by length-2 Witt vectors whose arithmetic involves only finite field operations and Leinster's entropy mod 2. This expresses qubit mutually unbiased bases entirely in terms of a finite field and allows deriving an explicit unitary correspondence between them and the affine plane over this field.
This talk is based on joint work with Harry Buhrman and Peter Bruin.