MCS-MP Seminar: Laura Monk
Speaker: Laura Monk (Bristol)
Title: Typical hyperbolic surfaces have an optimal spectral gap
Abstract: The first non-zero Laplace eigenvalue of a hyperbolic surface, or its spectral gap, measures how well-connected the surface is: surfaces with a large spectral gap are hard to cut in pieces, have a small diameter and fast mixing times. For large hyperbolic surfaces (of large area or large genus g, equivalently), we know that the spectral gap is asymptotically bounded above by 1/4. The aim of this talk is to present an upcoming article, joint with Nalini Anantharaman, where we prove that most hyperbolic surfaces have a near-optimal spectral gap. That is to say, we prove that, for any ε>0, the Weil-Petersson probability for a hyperbolic surface of genus g to have a spectral gap greater than 1/4-ε goes to one as g goes to infinity. This statement is analogous to Alon’s 1986 conjecture for regular graphs, proven by Friedman in 2003. I will present our approach, which shares many similarities with Friedman’s work, and introduce new tools and ideas that we have developed in order to tackle this problem.